
University of Augsburg

Institute for Mathematics
Discrete Mathematics, Optimization, and Operations Research

Master’s Thesis

Prediction Equilibria

in Dynamic Traffic Assignment

Michael Markl

Supervisor: Prof. Dr. Tobias Harks
Second Reviewer: Prof. Dr. Mirjam Dür

Matriculation Number: 1474802
Submission Date: March 07, 2022

Revision: June 21, 2022 (#497dc5)

Contents

1 Introduction 5

2 Computing Dynamic Shortest Paths in FIFO-Networks 7
2.1 Definition of the FIFO Order . 7
2.2 Properties of the FIFO Order . 8
2.3 Duality of Arrival and Departure Times . 10
2.4 The Dynamic Dijkstra Algorithm . 12
2.5 Computing Active Outgoing Edges . 13
2.6 Computing the Earliest Arrival Functions . 16

3 Vickrey’s Fluid Queuing Model 19
3.1 Fundamental Definitions . 19
3.2 Absolutely Continuous Functions . 22
3.3 Some Properties of Feasible Dynamic Flows 24
3.4 The Existence and Uniqueness of Deterministic Flows 27

4 Dynamic Prediction Equilibria 33
4.1 Definition . 33
4.2 Example of a Dynamic Prediction Equilibrium 35
4.3 Fundamentals for the Existence Theorem . 37
4.4 Existence of Dynamic Prediction Equilibria 41
4.5 Sufficient Conditions for p-Continuity of Predictors 49
4.6 Applied Predictors . 53
4.7 Comparison with Existing Forms of Equilibria 56

4.7.1 Dynamic Nash Equilibrium Flows . 56
4.7.2 Instantaneous Dynamic Equilibrium Flows 61

5 Computing Approximate Dynamic Prediction Equilibria 65
5.1 Outline of the Extension-Based Approximation Algorithm 65
5.2 Outflow Rates of Piecewise Constant Inflow Rates 69
5.3 Correctness and Termination . 71
5.4 Experimental Study . 72

5.4.1 Data . 73
5.4.2 The Linear Regression Predictor . 74
5.4.3 Comparison of Predictors . 75

6 Conclusion 79

3

1 Introduction

The prevailing behavior of traffic participants on today’s streets highly differs from that
only a few decades ago. In the past, road users based their routing decisions mainly on
physical maps. The information derived from these maps is an estimate on the transit
time of each street under normal, congestion-free conditions. Since the early 2000s agents’
routing decisions rely more and more upon the navigation systems built into their vehicles.
With the advent of the Traffic Message Channel (TMC), these systems were not only able
to compute a shortest path to the destination under normal conditions, but they could also
react to the current congestion status reported via radio signal.

In the past years, however, these navigation systems have experienced another stage of
improvement: Services like Google Maps not only offer real-time analyses of the current
traffic load using data gathered through the Internet, but their method of finding the best
routes to the destination also reflects a predicted future evolution of the network’s traffic
load based both on historical and real-time data. This enables users, for example, to avoid
the usual commuting traffic that is likely to boost travel times in rush hour on certain
streets.

Routing games play a significant role in the analysis and optimization of transportation
and communication networks. Traditionally, traffic load in these networks was modeled
using static flows. Modern techniques for modeling traffic networks capture the evolution
of traffic over time, resulting in dynamic flows, which are also called flows over time. In this
thesis the agents’ behavior is subject to the well-known Vickrey’s fluid queuing model. This
means that agents are modeled as infinitesimally small particles in a continuous flow setting.
Here, a network is modeled as a directed graph where each edge has a certain transit time
and a capacity rate. The transit time is the time a particle needs to travel from the one end
of the edge to the other, whereas the capacity rate describes the maximum rate at which
vehicles can enter the edge. If this rate is exceeded, a queue starts to build up in front of
the edge, and particles have to wait for an additional queuing time until they can traverse
the edge.

A game-theoretical structure is added to this physical model to reflect the agents’ be-
havior and to define states of equilibrium. In such an equilibrium, all agents, modeled as
infinitesimal particles, travel along “shortest paths” to their destination – or rather what
they think are shortest paths. Here, the various models of equilibria analyzed in the past
differ mainly in the informational access of the agents.

In the classical model, the so-called full information model, agents know the exact future
evolution of the traffic load on every edge. Therefore, they can determine actual shortest
paths when beginning their travel at their source node. Such a flow is called a dynamic
(Nash) equilibrium (DE) flow.

Of course, assuming the full information model is quite unrealistic. In an effort to reflect
the adaptive route choices of navigation systems using TMC, a new model was considered:
The instantaneous information model. Here, agents base their routing decision on the cur-

5

1 Introduction

rent congestion of all edges that can be retrieved instantaneously. This means, whenever
a particle arrives at an intermediate node, it will retrieve the current waiting times of all
edges, and calculate a shortest path according to these instantaneous travel times (assum-
ing the reported queue sizes will remain constant). A corresponding flow is then called
instantaneous dynamic equilibrium (IDE) flow.

This thesis analyzes yet another model which takes the latest innovations of navigation
systems into account. Traffic participants are equipped with a means of forecasting the
traffic based on the historical and real-time evolution of the traffic. This forecast might
not be accurate, however agents will base their shortest path calculations on the predicted
traffic evolution using this forecast method. If all agents travel along these predicted shortest
paths, a so-called dynamic prediction equilibrium (DPE) arises. This model turns out to be
a generalization of the two models mentioned above.

The thesis is organized in the following chapters. First, several properties of First-In-
First-Out (FIFO) ordered cost functions and algorithms for determining shortest paths in
these kinds of networks in Chapter 2 are discussed. This is particularly interesting for Vick-
rey’s fluid queuing model which induces a FIFO-ordered cost function itself. Dynamic flows
that adhere to this physical model are then formally introduced in Chapter 3. Moreover,
the deterministic nature of this model which has often been implicitly used in literature, is
formally proven. Chapter 4 focuses on the theoretical analysis of dynamic prediction equi-
libria. After providing an intuition of the underlying behavioral assumptions, the specific
notion of equilibrium is formally defined. The chapter continues with a discussion of an
unconstructive existence proof of DPE under mild assumptions on the predictors. This ex-
istence result is obtained by solving a variational inequality in the Lp function space. After
presenting a set of example predictors, the model is compared with the dynamic Nash equi-
librium and the instantaneous dynamic equilibrium flows, and it is shown that the proposed
model generalizes both of them. Finally, Chapter 5 presents an algorithm for computing
so-called approximate dynamic prediction equilibria (ε-DPE). The created simulation is run
both on synthetic and real-world traffic networks and a comparison of the performance of
the considered predictors is deduced.

6

2 Computing Dynamic Shortest Paths in
FIFO-Networks

Time-dependent cost functions that follow the First-In-First-Out (FIFO) order play an
important role in Vickrey’s fluid queuing model and in the dynamic prediction equilibria
introduced later: Once we equip every agent with a method of predicting the traffic, we
expect these predictions to induce dynamic cost functions that follow the FIFO order.

In this chapter – as well as in the rest of this thesis – we only work on directed graphs
G = (V,E) with a finite number of nodes V and a finite number of edges E. Although
we allow parallel edges, we often write e = vw ∈ E for a directed edge e from node v to
node w. For a node v, we denote the set of outgoing edges of v as δ+

v := {vw ∈ E} and
the set of incoming edges as δ−v := {uv ∈ E}. For a subset of nodes V ′ ⊆ V we denote
the set of edges leaving V ′ by δ+(V ′) := {vw ∈ E | v ∈ V ′ ̸∋ w} and those entering V ′ by
δ−(V ′) := {vw ∈ E | v /∈ V ′ ∋ w}. Moreover, we use the common notation [n] := {1, . . . , n}
for the first n natural numbers for n ∈ N.

Throughout this chapter we assume that all nodes can reach a specific sink node t ∈ V .
Given FIFO-ordered cost functions, we aim to find dynamic shortest paths to this sink node
as well as so-called active edges for a specific point in time θ. These are edges that lie on a
shortest path from a node v to the sink t.

This chapter gives a brief overview of some properties of FIFO-ordered cost functions and
introduces basic dynamic shortest paths algorithms. The focus is to pave the way for the
computation of approximated dynamic prediction equilibria as performed in Chapter 5. A
more in-depth analysis of the shortest-path problem in FIFO networks has been worked out
in [8]. A complexity analysis of the shortest path problem for piecewise linear cost functions
was carried out in [10].

We begin by defining the FIFO order for dynamic cost functions in Section 2.1. After
discussing some basic properties of FIFO-ordered cost functions in Section 2.2, we focus on
the duality between earliest arrival and latest departure times in Section 2.3 leading to a
convenient characterization of active edges. In Section 2.4 a dynamic variant of Dijkstra’s
algorithm for FIFO-ordered cost functions is analyzed and used in Section 2.5 to compute
the set of active outgoing edges of a single node. Section 2.6 wraps up the chapter with the
discussion of the Bellman-Ford algorithm which is capable of computing the earliest arrival
times at the sink as functions over time.

2.1 Definition of the FIFO Order
This section defines the notions of shortest paths and active edges for time-dependent,
FIFO-ordered cost functions.

For a time-dependent (also called dynamic) cost function c : R → RE
≥0, the exit time of

an edge e ∈ E when entering it at time θ is given by Te(θ) := θ + ce(θ) with Te : R → R.

7

2 Computing Dynamic Shortest Paths in FIFO-Networks

Definition 2.1.1. A time-dependent cost function c : R → RE
≥0 is FIFO-ordered, if for all

edges e ∈ E the function Te is monotonically increasing. It is strongly FIFO-ordered if Te

is strictly increasing for all e ∈ E.

In other words, a cost function is FIFO-ordered if particles that enter the edge at a later
point in time than others also arrive at a later point in time at the target node of an edge.

Let c : R → RE
≥0 be a time-dependent cost function. The exit time TP of a finite path

P = e1 · · · ek is given by the concatenation of the edges’ exit times as TP := Tek
◦ · · · ◦ Te1 .

A path is called simple if it does not contain a cycle, and we denote the set of all simple
v-w-paths as Pv,w for any two nodes v, w ∈ V . The earliest arrival time at t when starting
at time θ in v is then given by lv,t(θ) := minP∈Pv,t TP (θ). A path that attains this minimum
is called a shortest v-t-path at time θ.

We call an edge e = vw ∈ E active at time θ if the condition lv,t(θ) = lw,t(Te(θ)) holds
true. All active edges at time θ are collected in the set E(θ). Here, the underlying idea is
that we call an edge active if it lies on a shortest v-t-path. It should be noted, however,
that an active edge does not necessarily lie on a simple shortest path.

2.2 Properties of the FIFO Order

In the definition of the earliest arrival time, cyclic paths were ignored. One characteristic
property of FIFO-ordered cost functions is that cycles do not have a beneficial effect on the
arrival time of a path, thus allowing us to only consider simple paths.

Proposition 2.2.1. For a FIFO-ordered cost function c : R → RE
≥0, removing a cycle in

any v-t-path P does not increase the path’s exit time.
More specifically, if P = P1C P2 is the concatenation of a path P1, a cycle C and another

path P2, then TP (θ) ≥ (TP2 ◦ TP1) (θ) holds for all θ ∈ R.

Proof. The statement is a direct consequence of the monotonicity of TP2 and the fact that
TC(θ) ≥ θ holds for all θ ∈ R.

The next observation shows that the FIFO order enables us to find a representation of the
earliest arrival functions (lv,t)v based on the earliest arrival functions of neighboring nodes.
This observation is also used to describe the dynamic Bellman-Ford algorithm discussed in
Section 2.6.

Proposition 2.2.2. Let c : R → RE
>0 be a FIFO-ordered cost function. The vector (lv,t)v∈V

of functions is the pointwise maximal solution of the following system of equations in the
function-valued variables (l̃v : R → R)v∈V :

l̃v(θ) =
{
θ, if v = t,

mine=vw∈δ+
v
l̃w (Te(θ)) , otherwise.

Proof. We first prove that (lv,t)v∈V is a solution of the system. For v = t we have lv,t(θ) = θ
for all θ ∈ R. For v ̸= t let e = vw ∈ δ+

v and let P be a (simple) shortest w-t-path at time
Te(θ) and P ′ := eP be the concatenation of e and P .

8

2.2 Properties of the FIFO Order

If P ′ contains a cycle, then it was introduced by e and v occurs a second time in P ′. By
removing this cycle we obtain a simple v-t-path Q with

lv,t(θ) ≤ TQ(θ) ≤ TP ′(θ) = lw,t(Te(θ))

using Proposition 2.2.1. If P ′ does not contain a cycle, we analogously infer

lv,t(θ) ≤ TP ′(θ) = lw,t(Te(θ)).

Hence, lv,t(θ) is a lower bound on {lw,t(Te(θ)) | e = vw ∈ δ+
v }. Let P = e1 · · · ek be a

shortest v-t-path at time θ and let e1 = vw and P ′ = e2 · · · ek. Furthermore, let Q be a
shortest w-t-path at time Te1(θ). Assuming TP (θ) > lw,t(Te1(θ)) implies

TP (θ) > TQ(Te1(θ)),

which means that removing any cycle in the path e1Q would yield a strictly shorter path
than P ; a contradiction.

We now have to show that (lv,t)v∈V is the pointwise maximal solution. This means that
for any other solution (l̃v)v∈V of the system of equations, l̃v(θ) ≤ lv(θ) must hold for all
v ∈ V and θ ∈ R. Let P = e1 · · · ek be a shortest v-t-path at time θ with v0 = v, vk = t and
ei = vi−1vi for i ∈ [k]. Then, applying the system of equations yields

l̃v(θ) ≤ l̃v1(Te1(θ)) ≤ l̃v2,t(Te1 e2(θ)) ≤ · · · ≤ l̃t(TP (θ)) = TP (θ) = lv,t(θ).

The following example illustrates why the above system of equations above does not
always have a unique solution. The method used works in any cyclic graph: We build a
self-confirming cycle proposing an earlier arrival time than actually possible.

Example 2.2.3. For a counterexample of the uniqueness, we consider a network consisting
of three nodes V = {s, v, t}, three edges E = {st, sv, vs} and an arbitrary FIFO-ordered
cost function c : R → RE

≥0. The graph is depicted below:

s tv

We artificially bound the arrival time of s at 0 using l̃s(θ) := min{Tst(θ), 0}. The arrival
times of v and t are defined as expected with l̃t(θ) := θ and l̃v(θ) := l̃s(Tvs(θ)). Obviously,
the system of equations is satisfied for nodes v and t. For node s, the equation reads

l̃s(θ) = min
{
l̃t(Tst(θ)), l̃v(Tsv(θ))

}
.

By inserting the definitions of l̃v and l̃t, the right-hand side equates to

min
{
Tst(θ), l̃s(Tvs(Tsv(θ)))

}
= min

{
Tst(θ), Tst

(
Tvs
(
Tsv(θ)

))
, 0
}
.

Proposition 2.2.1 implies the inequality Tst(θ) ≤ Tst(Tvs(Tsv(θ))), so that the right-hand
side reduces to min{Tst(θ), 0} = l̃s(θ).

9

2 Computing Dynamic Shortest Paths in FIFO-Networks

This solution (l̃w)w∈V is different to the actual earliest arrival times (lw)w∈V : The earliest
arrival time when starting in s at any positive time θ > 0 is given by

ls(θ) = Tst(θ) ≥ θ > 0 = l̃s(θ).

2.3 Duality of Arrival and Departure Times
Sometimes it is useful not to work with the earliest arrival time, but with the latest possible
departure time instead. To enable this switch, we define a kind of inverse of a monotonically
increasing function.

Although this technique was developed independently of past studies, a similar method
has been introduced in [8].

Definition 2.3.1. We define the function space

F :=
{
f : R → R | f is increasing and lim

|x|→∞
|f(x)| = ∞

}
.

The reversal of f ∈ F is defined as

f← : R → R, θ 7→ sup {ξ ∈ R | f(ξ) ≤ θ} .

We can interpret the reversal of f in the following way: If f(θ) is the earliest arrival time
when departing at time θ, then f←(θ) is the latest departure time for arriving before or at
time θ.

Proposition 2.3.2. For f, g ∈ F the following statements are true:

(i) It holds that f← ∈ F , i.e. f← is increasing and lim|x|→∞ |f(x)| = ∞.

(ii) If f is continuous, then f←(θ) = max{ξ ∈ R | f(ξ) = θ} holds for all θ ∈ R and f←

is strictly increasing. Moreover, we have f ◦ f← = idR.

(iii) If f is continuous and strictly increasing, then f← is the inverse of f .

(iv) It holds that (g ◦ f)← = f← ◦ g← and (min{f, g})← = max{f←, g←}.

(v) If f ≥ idR holds pointwise, then so does f← ≤ idR.

Proof. (i). Let θ1, θ2 ∈ R with θ1 < θ2. Then

f←(θ1) = sup{ξ ∈ R | f(ξ) ≤ θ1} ≤ sup{ξ ∈ R | f(ξ) ≤ θ2} = f←(θ2) (2.1)

implies the monotonicity. From lim|θ|→∞ |f(θ)| and the monotonicity of f we conclude

lim
|θ|→∞

|f←(θ)| = lim
|θ|→∞

|sup{ξ ∈ R | f(ξ) ≤ θ}| = ∞.

(ii). We note that {ξ ∈ R | f(ξ) = θ} is non-empty, closed and bounded from above by
the condition lim|θ|→∞ |f(θ)| = ∞ and the continuity and monotonicity of f . The reversal
f← is strictly increasing as the inequality (2.1) is strict for continuous f .

10

2.3 Duality of Arrival and Departure Times

(iii). Let f be continuous and strictly increasing. Then it holds that

f←(θ) = max{ξ | f(ξ) = θ} = f−1(θ).

(iv). By definition, the first statement evaluated at time θ becomes

l := sup {ξ | g(f(ξ)) ≤ θ} = sup {ξf | f(ξf) ≤ sup {ξg | g(ξg) ≤ θ}} =: r.

Let ξf ∈ R fulfill f(ξf) ≤ g←(θ). Then for all ξg with g(ξg) ≤ θ we have f(ξf) ≤ ξg. Using
the monotonicity of g and f we infer g(f(ξf)) ≤ g(ξg) ≤ θ which implies l ≥ r. To see that
r ≥ l holds, any ξ ∈ R with g(f(ξ)) ≤ θ fulfills f(ξ) ≤ g←(θ).

The statement (min{f, g})← = max{f←, g←} evaluated in θ is equivalent to

l := sup{ξ | min{f(ξ), g(ξ)} ≤ θ} = max{sup{ξ | f(ξ) ≤ θ}, sup{ξ | g(ξ) ≤ θ}} =: r.

Let ξ ∈ R fulfill min{f(ξ), g(ξ)} ≤ θ and, without loss of generality, assume f(ξ) ≤ g(ξ).
Then it follows f(ξ) ≤ θ and therefore ξ ≤ f←(θ) ≤ r, implying l ≤ r. In order to show
l ≥ r, assume f←(θ) ≤ g←(θ) without loss of generality, so that r = g←(θ). Any ξ ∈ R with
g(ξ) ≤ θ fulfills min{f(ξ), g(ξ)} ≤ g(ξ) ≤ θ and hence l ≥ r holds true.

(v). For f ≥ idR we conclude

f←(θ) = sup{ξ ∈ R | f(ξ) ≤ θ} ≤ sup{ξ ∈ R | ξ ≤ θ} = θ

for all θ ∈ R.

Corollary 2.3.3. For a FIFO-ordered cost c : R → RE
≥0 with limθ→−∞ Te(θ) = −∞, the

following statements hold true:

(i) For all edges e ∈ E we have Te ∈ F .

(ii) For any path P = e1 · · · ek it holds that T←P = T←e1 ◦ · · · ◦ T←ek
.

(iii) For any node v ∈ V it holds that l←v,t = maxP∈Pv,t T
←
P .

The reversal of a function can be utilized for a characterization of active edges in the case
of continuous cost function:

Lemma 2.3.4. Let c : R → RE
≥0 be a continuous cost function following the FIFO order

with limθ→−∞ Te(θ) = −∞ for all e ∈ E and let t ∈ V be a sink node. Then an edge e = vw
is active at time θ if and only if Te(θ) ≤ l←w,t(lv,t(θ)).

Proof. Let edge e be active at time θ, i.e. lw,t(Te(θ)) ≤ lv,t(θ). By definition of the reversal
this already implies l←w,t(lv,t(θ)) ≥ Te(θ).

If on the other hand Te(θ) ≤ l←w,t(lv,t(θ)) holds, then the monotonicity of lw,t implies

lw,t(Te(θ)) ≤ lw,t

(
l←w,t(lv,t(θ))

)
.

By the continuity of lw,t the claim now follows from Proposition 2.3.2 (ii) which states that
lw,t ◦ l←w,t = idR.

11

2 Computing Dynamic Shortest Paths in FIFO-Networks

2.4 The Dynamic Dijkstra Algorithm

The first algorithm we discuss is a simple modification of Dijkstra’s algorithm to determine
the earliest arrival times (ls,w(θ))w∈V ′ at all nodes w ∈ V that are reachable from s. Ad-
justing Dijkstra’s algorithm for static edge costs to our setting yields the Dynamic Dijkstra
Algorithm as depicted in Algorithm 1.

Algorithm 1 The Dynamic Dijkstra Algorithm
1 def dynamic_dijkstra(
2 theta: float, source: Node, costs: Dict[Edge, Callable[[float], float]]
3) -> Dict[Node, float]:
4 arrival: Dict[Node, float] = {}
5 queue: PriorityQueue[Node] = PriorityQueue({ source: theta })
6 while len(queue) > 0:
7 v, xi = queue.pop_min()
8 arrival[v] = xi
9 for e in v.outgoing_edges:

10 w = e.node_to
11 if w in arrival:
12 continue
13 relaxation = arrival[v] + costs[e](arrival[v])
14 if w not in queue:
15 queue.push(w, relaxation)
16 elif relaxation < queue.key_of(w):
17 queue.decrease_key(w, relaxation)
18 return arrival

A priority queue, consisting of items together with associated priority keys, operates
at the core of the algorithm. The procedure requires the queue to support the opera-
tions push(item, key), pop_min(), decrease_key(item, new_key), item in queue, and
key_of(item). The operation push(item, key) adds the item item with priority key to
the queue, pop_min() returns the item-key-pair with the minimum key and removes it from
the queue, decrease_key(item, new_key) replaces the priority key associated to the item
item with new_key, item in queue returns whether item is contained in the queue and
the operation and key_of(item) returns the key of item in the queue.

The idea of Algorithm 1 is to visit a node v only once its earliest arrival time ls,v(θ) is
determined. We say a node w has been discovered if a node v of an incoming edge vw has
been visited. Here, all visited nodes together with their earliest arrival are recorded in the
dictionary arrival. The priority queue queue keeps track of all unvisited, discovered nodes
and associates each of them with a currently suspected earliest arrival time as its priority
key.

In the main loop of the procedure, we retrieve an unvisited, discovered node v with
the smallest priority key ξ amongst all unvisited, discovered nodes. Later, we will prove
ξ = ls,v(θ). Then, for each outgoing edge e = vw we realize the edge’s cost at time ξ and
update the currently suspected arrival time of the target node w.

12

2.5 Computing Active Outgoing Edges

The following proposition states, that the Dynamic Dijkstra Algorithm is correct.

Proposition 2.4.1. Given FIFO-ordered cost function c : R → RE
≥0, the Dynamic Dijkstra

Algorithm initiated on s ∈ V and θ ∈ R computes the vector (ls,w(θ))w∈V ′, where V ′ is the
set of nodes reachable from s.

Proof. As an invariant of the main loop, we prove that all key-value-pairs of the dictionary
arrivals are of the form (w, ls,w(θ)). In the beginning this is clearly true as arrival is
initially empty. After the first iteration of the loop, the only key-value-pair in arrivals is
(s, θ) = (s, ls,s(θ)). Assume the loop invariant holds before entering the body of the loop
again at a later time and let v be the popped node. As nodes are added to the queue once
at most, we have v ̸= s. Let u be the node in whose loop iteration v was added to the queue
or in whose loop iteration the key of v in the queue was decreased, whatever happened the
most recently.

Because the invariant implies that the value of u in arrival equals ls,u(θ), the value of
v in arrival equals ls,u(θ) + cuv(ls,u(θ)) = Tuv(ls,u(θ)) ≥ ls,v(θ). Assume this inequality is
strict and let P be a shortest s-v-path at time θ. If all nodes of P were available in arrival,
then the last node before v in P would have set the key of v in its iteration to ls,v(θ). Let
u be the first node in P that is not available in arrival. Because u cannot be the source
s, the predecessor u′ of u in P must have set the key of u to at most Tu′u(ls,u′(θ)) ≤ TP (θ).
As Tuv(ls,u(θ)) > ls,v(θ) = lP (θ) the key of u in the queue was smaller than the key of v, so
the priority queue would have popped u before v.

A simple binary min-heap together with a lookup table was implemented to support
the operations of the queue efficiently. With this data structure, the worst case running
time is logarithmic in the number of queue items for the operations push(item, key),
pop() and decrease_key(item, new_key) and constant for the operations min_key() and
contains(item). Thus, the Dynamic Dijkstra Algorithm terminates with a runtime of
O((|V | + |E|) · log |V | · Tc) where Tc denotes the time it takes to evaluate the cost ce(θ) for
some e ∈ E and θ ∈ R.

2.5 Computing Active Outgoing Edges
Given a FIFO-ordered cost function c : R → RE

≥0, nodes s, t ∈ V and a time θ ∈ R, we want
to compute the set of active outgoing edges E(θ) ∩ δ+

s of s, i.e. the edges e = sw with

ls,t(θ) = lw,t(Te(θ)).

Unfortunately, we cannot determine all active edges from the arrival times (ls,w(θ))w∈V ′

obtained by a simple run of the Dynamic Dijkstra Algorithm: In a static scenario, the idea
is to backtrack all shortest paths by searching edges e = vw backwards starting from t for
which equality holds in ls,w(θ) ≤ Te(ls,v(θ)). This approach is described in Algorithm 2,
which aims to return the set E(θ)∩δ+

s . The vector (ls,w(θ))w∈V ′ as returned by the Dynamic
Dijkstra Algorithm is passed to the function via the parameter arrivals. During the
procedure, we only enqueue a node u in queue, if there exists a u-t-path in which each edge
e = vw fulfills ls,w(θ) = Te(ls,v(θ)). Once we discover an edge from s to such an enqueued
node that also fulfills the equality, we add it to the set of active outgoing edges of s.

13

2 Computing Dynamic Shortest Paths in FIFO-Networks

Algorithm 2 Backtracking Shortest Paths
1 def backtrack_shortest_paths(
2 source: Node, sink: Node, arrival: Dict[Node, float],
3 costs: Dict[Edge, Callable[[float], float]]
4) -> Set[Edge]:
5 active_edges = set()
6 queue: List[Node] = [sink]
7 discovered: Set[Node] = {sink}
8 while len(queue) > 0:
9 w = queue.pop()

10 for e in w.incoming_edges:
11 v = e.node_from
12 if v not in arrivals \
13 or arrivals[v] + costs[e](arrivals[v]) > arrivals[w]:
14 continue
15 if v == source:
16 active_edges.add(e)
17 if v not in discovered:
18 queue.append(v)
19 discovered.add(v)
20 return active_edges

The following proposition proves that paths found using the described approach are in
fact shortest paths. Moreover, it shows that for strongly FIFO-ordered costs we find all
shortest paths, which implies that Algorithm 2 returns the whole set E(θ)∩δ+

s for this type
of cost functions.

Proposition 2.5.1. Let P = e1 · · · ek be a path with ei = vi−1vi and v0 = s, vk = t and let
c : R → RE

≥0 be a cost function following the FIFO order. Then(
∀i ∈ [k] : Tei

(
ls,vi−1(θ)

)
= ls,vi(θ)

)
=⇒ TP (θ) = ls,t(θ).

If c is strongly FIFO-ordered, the statements are equivalent.

Proof. Assume Tei(ls,vi−1(θ)) = ls,vi(θ) holds for all i. Then we have

TP (θ) = TP (ls,s(θ)) = Te2 ··· ek−1(ls,v1(θ)) = · · · = ls,vk
(θ) = ls,t(θ).

Pretend that c is strongly FIFO-ordered and let P fulfill TP (θ) = ls,t(θ). We assume there
is some i ∈ [k] with Tei(ls,vi−1(θ)) > ls,vi(θ). Let P ′ be a shortest s-vi-path at time θ. We
extend P ′ with ei+1 · · · ek and obtain an s-t-path P ′′. The strong monotonicity of all Te

yields the contradiction

ls,t(θ) ≤ TP ′′(θ) = Tei+1 ··· ek
(ls,vi(θ)) < Tei+1 ··· ek

(Te1 ··· ei(θ)) = TP (θ).

For general FIFO-ordered costs however, not all subpaths of shortest paths are again
shortest paths. This means, there might be edges e = vw that do not fulfill the equality

14

2.5 Computing Active Outgoing Edges

ls,w(θ) = Te(ls,v(θ)) but still lie on a shortest s-t-path at time θ. This might be the case
if there exists a bottleneck edge e′ closer to t together with an interval on which Te′ is
constant. An example of this can be seen in Figure 2.1.

s v t

ce1 ≡ 1

ce2 ≡ 2

ce3(θ) = max{3 − θ, 1}

Figure 2.1: Both e1 and e2 are active at time 0 with Te2(ls,s(0)) > ls,v(0).

This leaves us with the question of how to find the rest of the active edges for general
FIFO-ordered cost functions. For the rest of this section, we assume that c : R → RE

≥0 is a
continuous, FIFO-ordered cost function with limθ→−∞ Te(θ) = −∞ for all e ∈ E. The idea
for finding all active outgoing edges δ+

s ∩E(θ) is described as follows: Once we determined
ls,t(θ) using a first run of the Dynamic Dijkstra Algorithm, we carry out a second run of
the Dynamic Dijkstra Algorithm on the reverse graph and the reverse time to compute the
latest departure time vector (l←w,t(ls,t(θ)))w. Lemma 2.3.4 then states that an outgoing edge
e = sw ∈ δ+

s of s is active if and only if Te(θ) ≤ l←w,t(ls,t((θ))).
More specifically, the reverse graph of G = (V,E) is defined as G← = (V,E←) with the

reversed edges E← := {e← = wv | e = vw ∈ E}. We define a new cost function c̃ on the
reverse graph as

c̃ : R → RE←
≥0 , c̃e←(θ) := −T←e (−θ) − θ.

We denote the exit times induced by c̃ by T̃e← and T̃P← , where P← = e←k · · · e←1 is a path
in G← for a corresponding P = e1 · · · ek in G. Moreover, the earliest arrival time functions
induced by c̃ are denoted as l̃v,w for v, w ∈ V .

Lemma 2.5.2. Let c be a continuous, FIFO-ordered cost function c : R → RE
≥0 fulfilling

limθ→−∞ Te(θ) = −∞ for all e ∈ E. Then l̃v,w(θ) = −l←w,v(−θ) holds for all θ ∈ R.

Proof. The non-negativity of c implies Te ≥ idR and by Proposition 2.3.2 (v) we infer
T←e ≤ idR. Therefore, we have T←e (−θ) ≤ −θ and thus c̃e←(θ) ≥ 0 holds for all θ ∈ R.

The new edge exit times fulfill T̃e(θ) = −T←e (−θ) and, by Proposition 2.3.2 (ii), T̃e is
strictly increasing and c̃ is strongly FIFO-ordered. The exit time of a path P← = e←k · · · e←1
when entering at time θ equals

T̃P←(θ) = T̃e←
k−1 ··· e

←
1

(−T←ek
(−θ)) = T̃e←

k−2 ··· e
←
1

(−T←ek−1(T←ek
(−θ)) = · · · = −T←P (−θ).

Therefore, the earliest arrival times are given as

l̃v,w(θ) = min
P∈Pw,v

T̃P←(θ) = min
P∈Pw,v

−T←P (−θ) = − max
P∈Pw,v

T←P (−θ) = −l←w,v(−θ).

With this setup, we execute a second run of the Dynamic Dijkstra Algorithm on the
reverse graph G← together with the costs c̃, the starting time −ls,t(θ), and the sink as the

15

2 Computing Dynamic Shortest Paths in FIFO-Networks

start node. The resulting vector is of the form(
l̃t,w(−ls,t(θ))

)
w

=
(
−l←t,w(ls,t(θ))

)
w
,

for which a negation yields the desired vector.
To implement this algorithm, we have to restrict ourselves to cost functions where the

reversal of Te can be evaluated. This is the case, for example, if the cost functions ce are
piecewise linear functions for all e ∈ E. Assuming the reversal of Te can be determined in
T ←c time the running time of the complete procedure is O((|V | + |E|) · log |V | · (Tc + T ←c)).
We collect our result in the following theorem.

Theorem 2.5.3. Let c be a continuous, FIFO-ordered cost function c : R → RE
≥0 fulfilling

limθ→−∞ Te(θ) = −∞ for all e ∈ E. Then, the above procedure computes the set δ+
s ∩E(θ)

in O((|V | + |E|) · log |V | · (Tc + T ←c)) time.

2.6 Computing the Earliest Arrival Functions

Often, it is useful not only to compute active edges for some fixed point in time, but to have
the earliest arrival functions (lv,t)v∈V ′ at some sink available as functions over time.

A simple but also quite expensive method of computing these functions is a modification
of the Bellman-Ford algorithm as described for example in [9]. It uses the representation
given in Proposition 2.2.2. This means that we want to find the pointwise maximal solution
of the system of equations

l̃v(θ) =
{
θ, if v = t,

mine=vw∈δ+
v
l̃w (Te(θ)) , otherwise.

Hence, the idea is to initialize all functions with l̃v(θ) := ∞ for v ̸= t and l̃t(θ) := θ
and decrease the functions (pointwise) using the operation l̃v := minvw∈δ+

v
l̃w ◦ Tvw for all

v ∈ V \ {t} until no further changes can be made. Then all equations are automatically
fulfilled.

More specifically, if some function l̃w changes, then all nodes v with an edge vw leading to
w might need to be adjusted as well using the operation l̃v := min{l̃v, l̃w ◦ Tvw}. Therefore,
we need some operations on the class of functions operated on to formulate the algorithm:
In order to calculate the edge exit times Te = ce + idR we need pointwise addition and a
representation of the identity function; for updates of the functions the pointwise minimum
and the composition of functions have to be implemented. To detect changes we also need
to be able to identify whether one function is pointwise smaller or equal to some other
function.

In the context of this thesis, all the necessary operations explained above have been
created for piecewise linear functions. The resulting procedure is shown in Algorithm 3.
Here, cost + identity is the piecewise linear function representing the sum of cost and
identity. The function compose computes the piecewise linear function representing the
composition of the first argument with the second argument. The decision whether the
function arrivals[v] is element wise smaller or equal to relaxation is expressed by the

16

2.6 Computing the Earliest Arrival Functions

Algorithm 3 Dynamic Bellman-Ford Algorithm
1 def dynamic_bellman_ford(
2 sink: Node, costs: Dict[Edge, PiecewiseLinear], theta: float
3) -> Dict[Node, PiecewiseLinear]:
4 arrivals: Dict[Node, PiecewiseLinear] = { sink: identity }
5 exit_times = {e: cost + identity for (e, cost) in costs.items()}
6 changed_nodes = {sink}
7 while len(changed_nodes) > 0:
8 change_detected = {}
9 for w in changed_nodes:

10 for e in w.incoming_edges:
11 v = e.node_from
12 relaxation = compose(arrivals[w], exit_times[e])
13 if v not in arrivals.keys():
14 change_detected.add(v)
15 arrivals[v] = relaxation
16 elif not arrivals[v] <= relaxation:
17 change_detected.add(v)
18 arrivals[v] = minimum(arrivals[v], relaxation)
19 changed_nodes = change_detected
20 return arrivals

term arrivals[v] <= relaxation. Finally, the pointwise minimum of two functions is
computed using the operation minimum.

For a more thorough analysis of the Dynamic Bellman-Ford algorithm and similar algo-
rithms the reader may is referred to [9].

The benefit of calculating the earliest arrival times as functions is that only a single run
of the Dynamic Bellman-Ford Algorithm is necessary to compute the set of active edges
E(θ) for all θ ∈ R. This can be achieved by simply evaluating lw,t(Te(θ)) ≤ lv,t(θ) for all
e = vw ∈ E and θ ∈ R. Additionally, the result can be used to calculate average travel
times as explained in Section 5.4.

17

3 Vickrey’s Fluid Queuing Model

This chapter discusses the physical model of agents that participate in the traffic network.
Here, agents act as infinitesimal particles in a continuous, dynamic flow. The formal model
goes back to a work by William Vickrey in [26], and therefore it is often referred to as
Vickrey’s Fluid Queuing Model.

In this work we follow the mathematical notation given by Cominetti et al. in [7] which
is similar to that in [12–14, 17]. In Section 3.1 we formally introduce dynamic flows and the
corresponding restrictions necessary to establish the deterministic queuing behavior. Before
we analyze these so-called feasible dynamic flows we prove some fundamental properties of
absolute continuous functions in Section 3.2. These are useful for demonstrating intuitive
characteristics of feasible flows in Section 3.3. Finally, in Section 3.4 we formally prove
that given a set of edge inflow rates there exists a unique set of outflow rates for any edge
such that the capacity constraints of an edge are satisfied. This property was claimed by
Cominetti et al. and their insights in [7] were used to obtain the formal proof.

3.1 Fundamental Definitions

We begin by defining the model of dynamic flows, which are also called flows over time.
Each edge e ∈ E of a finite, directed graph G = (V,E) has a positive rate capacity νe > 0
and a non-negative transit time τe ≥ 0. The rate capacity limits the amount of flow an
edge can transfer per time unit. As such, this capacity can be imagined as the width of a
conveyor belt. The transit time is the time the conveyor belt needs to transfer particles from
its beginning to its end. Throughout the thesis we allow τe = 0, however for most results
we require strict positive transit times or, in some cases, that the transit time

∑
e∈C τe of

any directed cycle C is strictly positive.
Moreover, in this work we consider multicommodity flows. That means, we have a finite

set I of commodities and each commodity i ∈ I has a source node si ∈ V and a sink node
ti ∈ V \ {si}. We require that si can reach ti in G. Furthermore, we define

Vi := {v ∈ V | v lies on a directed path from si to ti in G} and
Ei := {e ∈ E | e lies on a directed path from si to ti in G}

as the subset of nodes and edges that are relevant to commodity i.

Definition 3.1.1. The space of locally p-integrable functions from an interval I to a mea-
surable set X ⊆ R is defined as

Lp
loc(I,X) :=

{
f ∈ L0(I,X)

∣∣∣∣∣
∫ b

a
|f |p dλ < ∞ for all a < b in I

}
,

19

3 Vickrey’s Fluid Queuing Model

where L0(I,X) is the set of equivalence classes of measurable functions that are almost
everywhere identical.

The space of rate functions consists of all non-negative, locally integrable functions that
vanish on (−∞, 0), and is denoted by

R :=
{
f ∈ L1

loc(R,R≥0)
∣∣∣ f |(−∞,0)

a.e.= 0
}
.

Each commodity i ∈ I has a network inflow rate which is given by a rate function ui ∈ R.
For a time θ ∈ R, the value ui(θ) denotes the rate at time θ at which particles of commodity
i enter the network in the commodity’s source si.

Definition 3.1.2. A (dynamic) flow is a pair f = (f+, f−) of families of functions with
f+

i,e, f
−
i,e ∈ R for all e ∈ E and i ∈ I.

Here, f+
i,e(θ) is called the inflow rate of commodity i into edge e at time θ; f−i,e(θ) describes

the outflow rate of commodity i out of e at time θ. We denote the total inflow and outflow
rates of an edge e by f+

e (θ) :=
∑

i∈I f
+
i,e(θ) and f−e (θ) :=

∑
i∈I f

−
i,e(θ), respectively.

The cumulative inflow and cumulative outflow of a commodity i up to time θ are defined as
F+

i,e(θ) :=
∫ θ

0 f
+
i,e(t) dt and F−i,e(θ) :=

∫ θ
0 f
−
e (t) dt, respectively. Similarly, the total cumulative

in- and outflow are defined as F+
e (θ) :=

∑
i∈I Fi,e(θ) and F−e (θ) :=

∑
i∈I F

−
i,e(θ), respectively.

Based on that, the queue length of an edge e at time θ is given by qe(θ) := F+
e (θ)−F−e (θ+τe).

Now, ce(θ) := τe + qe(θ)/νe denotes the time-dependent cost of traversing an edge e at
time θ where qe(θ)/νe is often referred to as the waiting time of edge e at time θ. Based on
that, the exit time when entering an edge e at time θ is defined as Te(θ) := θ + ce(θ).

Notation 3.1.3. If the dynamic flow is not clear from the context, we often write F+,f
e ,

F−,f
e , qf

e , cf
e , or T f

e to explicitly state that f is the underlying dynamic flow on which these
functions depend on.

This definition already gives a good insight into how particles should behave in a dynamic
flow of this type: A particle of commodity i is generated at the source si at some time
θ and aims to arrive at the sink ti as early as possible. At the time the agent spawns
at si, it immediately enters an outgoing edge e of si. At this moment, the cost of e is
ce(θ) = τe + qe(θ)/νe, which means that the particle has to queue for qe(θ)/νe time units
before it can traverse the edge in τe additional time units. It will thus arrive at v at time
Te(θ) = θ+ ce(θ). Once it arrives at an intermediate node v ̸= ti, it will again choose a new
outgoing edge in δ+

v until it arrives at its destination ti.
Figure 3.1 illustrates the queuing behavior for a simple network. In this example, all

edges have a transit time of τe = 1 and a capacity of νe = 1 except edge s1v, which has a
capacity of νe = 2. Here, the set of commodities I = {r, g} consists of a red commodity r
and a green commodity g that both share the same sink t. The network inflow rates are
given as ur|[0,∞) ≡ 2 and ug|[0,∞) ≡ 1. For i ∈ I, all particles that spawn at some time θ
at the source si immediately enter the first edge siv which can carry all particles because
its capacity matches the network inflow rate. As shown in Figure 3.1(a), the first particles
that have appeared in the network reach the center of the first edge at time 0.5. At time 1
these particles reach the node v. As soon as a particle arrives at v, it will immediately enter
the next edge vt. Starting from time 1, particles enter the edge vt at a rate of f+

vt|[1,∞) = 3
exceeding the edge’s capacity by 2. Therefore, a queue starts to build up in front of vt. At

20

3.1 Fundamental Definitions

sr

tv

sg

(a) The flow at time 0.5.

sr

tv

sg

(b) The flow at time 1.5.

Figure 3.1: Queuing behavior of particles in feasible dynamic flows.

time 1.5 this queue has a length of qvt(1.5) = 1 as shown in Figure 3.1(b). Because the
incoming flow of the red commodity makes up 2/3 of the total inflow rate into edge vt, the
red commodity is designated 2/3 of the capacity of vt.

In order to make dynamic flows follow the physical model as imagined above, we have to
make several restrictions. These result in the class of feasible dynamic flows.

Definition 3.1.4. Given a dynamic flow f , we introduce the following constraints:

(F1) The outflow rate on edge e does not exceed its capacity, i.e. f−e (θ) ≤ νe.

(F2) Edges operate at capacity, i.e.

∀e ∈ E : f−e (θ) =
{
νe, if qe(θ − τe) > 0,
f+

e (θ − τe), otherwise.

(F3) Flow traverses an edge in a FIFO-manner, i.e.

∀e ∈ E : f−i,e(θ) =

f−e (θ) · f+
i,e(ξ)

f+
e (ξ) , if f+

e (ξ) > 0,
0, otherwise,

where ξ := min{ξ | Te(ξ) = θ} is the earliest possible time for entering edge e in order
to exit the edge at time θ.

(F4) Flow is preserved on intermediate nodes, i.e.

∀i ∈ I, v ∈ V :
∑

e∈δ+
v

f+
i,e(θ) −

∑
e∈δ−v

f−i,e(θ)

= ui(θ), for v = si,
= 0, for v ∈ V \ {si, ti},
≤ 0, for v = ti.

A flow f is called feasible up to time H ∈ R∪{∞} if it fulfills all these properties for almost
all θ < H.

21

3 Vickrey’s Fluid Queuing Model

A flow f is called deterministic on edge e up to time H ∈ R ∪ {∞} if it fulfills properties
(F1), (F2) and (F3) for edge e and almost all θ < H. A flow f which is deterministic on all
e ∈ E up to time H, is called a deterministic flow up to time H.

For H = ∞, we usually omit the term “up to ∞” in the above definitions.
Remark 3.1.5. We defined property (F3) in the same way as in literature such as [14].
However, we note that by Proposition 3.3.1 and Corollary 3.2.9 the set

{θ | min{ξ | Te(ξ) = θ} < max{ξ | Te(ξ) = θ}}

has zero measure whenever (F1) is fulfilled. Thus, we might choose any ξ with Te(ξ) = θ
without any effect on the feasibility definitions. Taking the minimum of such ξ usually
simplifies the handling of flows that fulfill (F1) up to some finite horizon H.

3.2 Absolutely Continuous Functions
Before discussing some properties of feasible dynamic flows, it is useful to first introduce
so-called absolutely continuous functions.
Definition 3.2.1. A function f : [a, b] → R is absolutely continuous on the interval [a, b],
if for all ε > 0 there exists some δ > 0 such that any finite sequence (a1, b1), . . . , (aN , bN) of
pairwise disjoint, open subintervals of [a, b] fulfills

N∑
i=1

(bi − ai) < δ =⇒
N∑

i=1
|f(bi) − f(ai)| < ε.

The following two theorems as given help to understand why absolutely continuous func-
tions play an important role in the discussion of feasible flows.
Theorem 3.2.2 ([24, Theorem 10 in Section 6.5]). Let f : [a, b] → R be absolutely contin-
uous for some a, b ∈ R, a < b. Then f is differentiable almost everywhere on (a, b), and its
derivative f ′ is integrable over [a, b] with∫ b

a
f ′ dλ = f(b) − f(a).

The next statement is often referred to as the Lebesgue differentiation theorem.
Theorem 3.2.3 ([24, Theorem 11 in Section 6.5]). A function f : [a, b] → R is absolutely
continuous on [a, b] if and only if there exists an integrable function g : [a, b] → R with

f(x) = f(a) +
∫ x

a
g dλ.

The immediate results of these theorems in the context of dynamic flows are that F+
e

and F−e are absolutely continuous on any interval [a, b] because the edge inflow and outflow
rates are locally integrable. Later, we will see that the same applies to the queue length
functions and edge exit time functions as well.

The next proposition gives an equivalent formulation of absolutely continuous functions
using possibly infinite sequences of subintervals.

22

3.2 Absolutely Continuous Functions

Proposition 3.2.4. A function f : [a, b] → R is absolutely continuous if and only if for all
ε > 0 there exists some δ > 0 such that any finite or countably infinite sequence ((ai, bi))i∈I

of pairwise disjoint, open subintervals of [a, b] fulfills∑
i∈I

(bi − ai) < δ =⇒
∑
i∈I

|f(bi) − f(ai)| < ε.

Proof. Let f be absolutely continuous and let ε > 0 be arbitrary. We take δ > 0 as
the witness fulfilling Definition 3.2.1 for ε/2. We only need to check the property for
countably infinite sequences ([ai, bi])i∈N of pairwise disjoint, closed subintervals of [a, b]
with

∑
i∈N(bi − ai) < δ. Here, it holds

∑N
i=1 |f(bi) − f(ai)| < ε/2 for any N ∈ N. Hence, we

deduce
∑∞

i=1 |f(bi) − f(ai)| ≤ ε/2 < ε.

In the following statements, λ∗ refers to the Lebesgue outer measure.
Proposition 3.2.5. Let f : [a, b] → R be absolutely continuous and ε > 0 arbitrary. For
δ > 0 fulfilling the requirements in Proposition 3.2.4, λ∗(A) < δ implies λ∗(F (A)) < ε.

In particular, absolutely continuous functions map Lebesgue-null sets to Lebesgue-null
sets. This is known as the Luzin N property.
Proof. By definition of the Lebesgue outer measure there exists an infinite sequence (ai, bi)
of open intervals with N ⊆

⋃
i∈N(ai, bi) such that

∑
i∈N(bi − ai) < δ. Without loss of

generality we can assume that these intervals are pairwise disjoint by taking the union of
overlapping intervals.

By continuity, f attains its minimum mi and maximum Mi on [ai, bi] in points ci, di ∈
[ai, bi]. We then have λ∗(f((ai, bi))) = λ([mi,Mi]) = |f(di) − f(ci)|, respectively. With∑

i∈N |di − ci| ≤
∑

i∈N(bi − ai) < δ and Proposition 3.2.4 it follows

λ∗(f(N)) ≤ λ∗

⋃
i∈N

f ((ai, bi))

 ≤
∑
i∈N

λ∗ (f((ai, bi))) =
∑
i∈N

|f(di) − f(ci)| < ε.

For the analysis of some properties of feasible dynamic flows, a variant of Sard’s theorem
will be used. In its original form introduced by Sard in [25], the theorem states that the set
of critical values of a differentiable map is a Lebesgue-null set (c.f. [5, Theorem 6.1]). We
show that a similar result holds true for absolutely continuous functions.

This result builds upon Vital’s Covering Theorem as presented in [24]. We call an interval
non-degenerate, if its interior is non-empty.
Definition 3.2.6. A collection V of closed, bounded, non-degenerate intervals is called a
Vitali-Covering of a set A ⊆ R if for all x ∈ A and ε > 0 there exists an interval [a, b] ∈ V
with x ∈ [a, b] and b− a < ε.
Lemma 3.2.7 (Vitali’s Covering Theorem [24, Section 6.2]). Let A be a measurable set
with λ∗(A) < ∞ and let V be a Vitali-Covering of A consisting of closed, bounded intervals.
Then there exists a finite or countably infinite disjoint sequence ([ai, bi])i∈I of intervals in
V with

λ∗
(
A \

⋃
i∈I

[ai, bi]
)

= 0.

23

3 Vickrey’s Fluid Queuing Model

Theorem 3.2.8 (Sard’s theorem). Let f : [a, b] → R be absolutely continuous and let A
be the set of points x ∈ [a, b] in which f is differentiable with f ′(x) = 0. Then, f(A) is a
Lebesgue-null set.

Proof. For arbitrary ε > 0 we show λ∗(f(A)) < ε. We define a Vitali-Covering as the set

V :=
{
Bh(x)

∣∣∣∣x ∈ A, h > 0,∀y ∈ Bh(x) : |f(y) − f(x)| < ε

2(b− a) · |y − x|
}
,

where we denote Bh(x) := [x − h, x + h]. This is indeed a Vitali-Covering for A as for all
x ∈ A we have

lim
y→x

|f(y) − f(x)|
|y − x|

= 0

and thus for all δ > 0 there exists an interval of length smaller than δ in V containing x.
By Lemma 3.2.7, there is a finite and pairwise disjoint sequence (Bhi

(xi))i∈I of intervals in
V with λ∗(A \

⋃
i∈I Bhi

(xi)) = 0. We use this together with Proposition 3.2.5 to estimate

λ∗(f(A)) ≤ λ∗
(
f

(
A \

⋃
i∈I

Bhi
(xi)

)
∪ f

(⋃
i∈I

Bhi
(xi)

))
≤
∑
i∈I

λ∗ (f (Bhi
(xi))) .

For all i ∈ I we know that f(Bhi
(xi)) is contained in an interval of length hi · ε/(b − a).

Moreover, as all Bhi
(xi) are pairwise disjoint subsets of [a, b], we have

∑
i∈I 2 · hi ≤ b − a.

This implies

λ∗(f(A)) ≤
∑
i∈I

λ∗(f(Bhi
(xi))) ≤

∑
i∈I

hi · ε
b− a

≤ ε · (b− a)
2 · (b− a) < ε.

We note that Sard’s theorem even holds for arbitrary continuous functions. The proof
of this is also based on Vitali’s Covering Theorem, however it is a bit more technical.
We conclude this section with a corollary for absolutely continuous and non-decreasing
functions.

Corollary 3.2.9. Let f : [a, b] → R be an absolutely continuous, non-decreasing function.
Then the set of points t ∈ f([a, b]) with min f−1({t}) < max f−1({t}) is a Lebesgue-null set.

Proof. For every such point t, let ξt denote the center point of the closed, non-degenerate
interval I := f−1({t}). The derivative of f in ξt exists and vanishes. By Sard’s theorem,
the set of the points f(ξt) = t is a Lebesgue-null set.

3.3 Some Properties of Feasible Dynamic Flows
To get a better intuition of the behavior of feasible dynamic flows, we collect a few statements
that will prove beneficial later in this thesis. The first observation we make is that particles
are processed by the queue in a FIFO order. Therefore, all properties of FIFO-ordered cost

24

3.3 Some Properties of Feasible Dynamic Flows

functions that were obtained in Chapter 2 hold true for the cost function induced by feasible
dynamic flows.

Proposition 3.3.1. The time-dependent cost function ce induced by a dynamic flow f
fulfilling (F1) for almost all θ ∈ R is FIFO-ordered.

Proof. We apply property (F1) in the following inequality with θ1 ≤ θ2:

Te(θ2) − Te(θ1) = θ2 − θ1 + qe(θ2) − qe(θ1)
νe

= θ2 − θ1 +
∫ θ2

θ1
f+

e (t) dt−
∫ θ2+τe

θ1+τe
f−e (t) dt

νe

≥ θ2 − θ1 +
∫ θ2

θ1
f+

e (t) dt− (θ2 − θ1) · νe

νe
≥ 0.

The same property (F1) is responsible for the fact that the queue stays strictly positive
on any interval (θ, θ + qe(θ)/νe).

Proposition 3.3.2. If a dynamic flow f fulfills (F1) up to time H on an edge e, then qe

is strictly positive on any interval (θ, θ + qe(θ)/νe) with Te(θ) ≤ H.

Proof. If qe(θ) is non-positive, the interval is empty. For positive qe(θ), property (F1) implies

qe(θ + δ) = qe(θ) +
∫ θ+δ

θ
f+

e dλ−
∫ θ+τe+δ

θ+τe

f−e dλ ≥ qe(θ) − δ · νe > 0

for all δ ∈ (0, qe(θ)/νe).

Once we add property (F2) we can show that the cumulative flow that has entered an
edge up to some time θ has left the edge until time Te(θ).

Proposition 3.3.3. If a dynamic flow f fulfills (F1) and (F2) up to some time H on an
edge e ∈ E, then F+

e (θ) = F−e (Te(θ)) holds for all θ with Te(θ) ≤ H. If (F1) is fulfilled
almost everywhere, then F+

e (T←e (ξ)) = F−e (θ) holds true for ξ ≤ H.

Proof. Proposition 3.3.2 and property (F2) imply
∫ θ+qe(θ)/νe

θ f−e dλ = qe(θ). We conclude

F−e (Te(θ)) = F−e (θ + τe) +
∫ θ+τe+qe(θ)/νe

θ+τe

f−e dλ = F+
e (θ) + qe(θ) − qe(θ) = F+

e (θ).

If (F1) is fulfilled almost everywhere, ce is FIFO-ordered by Proposition 3.3.1. Thus, we
can apply Proposition 2.3.2 (ii) with θ = T←e (ξ) which yields F+

e (T←e (ξ)) = F−e (ξ).

Property (F2) also implies that the outflow rate of an edge vanishes up to time τe. There-
fore, if arbitrary functions (f−i,e)i∈I ∈ L1

loc(R,R≥0)I fulfill (F2) up to some time H ≥ 0, the
following proposition already implies f−i,e ∈ R.

25

3 Vickrey’s Fluid Queuing Model

Proposition 3.3.4. If a dynamic flow f fulfills (F2) on an edge e up to some time H ∈
R≥0 ∪ {∞}, then f−i,e(θ) vanishes for almost all θ ≤ min{τe, H} for all i ∈ I. Moreover, for
all θ < H − τe the queue length attains the form

qe(θ) =
∫ θ

0
f+

e (ξ) − f−e (ξ + τe) dλ(ξ).

These statements hold true for arbitrary (f+
i,e)i∈I ∈ RI and (f−i,e)i∈I ∈ L1

loc(R,R≥0)I that
fulfill (F2) up to time H.

Proof. Because f+
e vanishes almost everywhere on (−∞, 0) and f−e is non-negative, the

queue function qe is non-positive on (−∞, 0). (F2) implies that f−e (θ) = f+
e (θ−τe) = 0 holds

for almost all θ ≤ min{τe, H}. The non-negativity of all f−i,e shows f−i,e|(−∞,min{τe,H})
a.e.= 0

for all i ∈ I.
For θ+ τe < H, the queue length can be analyzed using a case distinction. For θ ≤ 0 any

integral involving f−e vanishes in the following calculation due to the above observation and
θ + τe ≤ min{τe, H}:

qe(θ) =
∫ θ

0
f+

e dλ−
∫ θ+τe

0
f−e dλ = 0 =

∫ θ

0
f+

e dλ−
∫ θ+τe

τe

f−e dλ

=
∫ θ

0
f+

e (ξ) − f−e (ξ + τe) dλ(ξ).

On the other hand, θ > 0 implies H > τe and thus
∫ τe

0 f−e dλ = 0. We infer

qe(θ) =
∫ θ

0
f+

e (ξ) − f−e (ξ + τe) dλ(ξ) −
∫ τe

0
f−e dλ

=
∫ θ

0
f+

e (ξ) − f−e (ξ + τe) dλ(ξ).

The last proposition in this chapter shows that flow cannot occur at arbitrary places in
the network.

Proposition 3.3.5. Let f be a feasible dynamic flow and let i ∈ I be a commodity in a
network in which any cycle C has a strictly positive transit time

∑
e∈C τe > 0. Let V ′ ⊆ V

be a set of nodes with si ∈ V ′ for which the inflow rate f+
i,e vanishes almost everywhere for

any e ∈ δ+(V ′). Then f+
i,e vanishes for all e = vw ∈ E with w /∈ V ′.

Proof. Let E′ denote the set of edges {e = vw ∈ E |w /∈ V ′} and let θ ∈ R be the infimum
of all ξ ∈ R for which there exists some e ∈ E′ with F+

i,e(ξ). Then there is an edge e0 = v0w

with F+
i,e(ξ) > 0 for any ξ > θ. By the flow conservation in v0, there exists an edge

e1 = v1v0 with F−i,e1
(ξ) > 0 and hence F+

i,e1
(ξ − τe1) > 0 for any ξ > θ. The statement’s

requirement implies v1 /∈ V ′, and therefore e1 ∈ E′ and τe1 = 0 must hold. Continuing
this approach leads to an infinite path of edges within E′ each with a zero transit time. As
there are only finitely many edges, this sequence must contain a cycle of zero transit time;
a contradiction.

26

3.4 The Existence and Uniqueness of Deterministic Flows

3.4 The Existence and Uniqueness of Deterministic Flows

In this section, we discuss the existence and uniqueness of deterministic edge outflow rates
for any given family of inflow rates (f+

i,e)i,e.
In a first step, we discuss the unique existence of functions that behave similar to f−e

in (F1) and (F2). More specifically, let f ∈ R be any rate function and let ν : R → R≥0 be
any locally integrable function, which acts as the time-dependent capacity of an edge. To
reflect our model, we will later set ν to be constant. For now, however, we want to find a
function g ∈ R that fulfills g(θ) ≤ ν(θ) and

g(θ) =
{
ν(θ), if

∫ θ
0 f − g dλ > 0,

f(θ), otherwise,
(3.2)

for almost all θ ∈ R. Here,
∫ θ

0 f − g dλ should be interpreted as the length of a queue
operating at a certain capacity rate ν with inflow rate f and outflow rate g.

Cominetti et al. have given a representation of the queue length for feasible flows in [7,
Section 2.2] that only depends on the edge’s inflow and capacity rate. In the following, we
formally prove a slightly more general variant of their statement.

Lemma 3.4.1. Given f ∈ R and g ∈ L1
loc(R,R≥0) that fulfill g ≤ ν and Equation (3.2)

almost everywhere on (−∞, H) for some H ∈ R≥0 ∪ {∞}, then for all θ < H it holds∫ θ

0
f − g dλ = max

ξ≤θ

∫ θ

ξ
f − ν dλ

and ξ∗ := max{ξ ≤ θ |
∫ ξ

0 f − g dλ = 0} is such a maximizer. Moreover, g vanishes almost
everywhere on (−∞, 0), implying g ∈ R.

Proof. We first show that q(θ) :=
∫ θ

0 f − g dλ is never negative for θ < H. Assume the
contrary and let θ < H fulfill q(θ) < 0. If θ > 0, choose ξ∗ := max{ξ ≤ θ | q(ξ) = 0} to
be the latest time before θ at which the queue was empty. Because q vanishes at time
0, this maximum ξ∗ exists. The continuity of q implies that q is non-positive on [ξ∗, θ].
Applying Equation (3.2) on (ξ∗, θ) yields

q(θ) =
∫ θ

0
f − g dλ =

∫ ξ∗

0
f − g dλ+

∫ θ

ξ∗
f − f dλ = q(ξ∗) = 0,

a contradiction. For θ < 0 we have q(θ) ≤ 0 as f vanishes on (−∞, 0). Because of
Equation (3.2), g(θ) = f(θ) = 0 holds for almost all θ < 0, showing q(θ) = 0 for θ < 0.

We now prove the desired equation for all θ < H. For θ < 0 we have q(θ) = 0. Fur-
thermore, the right-hand side equates to maxξ≤θ

∫ θ
ξ −ν dλ = 0. For θ > 0 we again define

ξ∗ := max{ξ ≤ θ | q(ξ) = 0} to be the latest time before θ at which the queue is empty.
Then, by definition, q is positive on (ξ∗, θ) and hence Equation (3.2) implies g = ν almost
everywhere on (ξ∗, θ). This shows

q(θ) = q(ξ∗) +
∫ θ

ξ∗
f − ν dλ =

∫ θ

ξ∗
f − ν dλ.

27

3 Vickrey’s Fluid Queuing Model

It remains to show that
∫ θ

ξ f − ν dλ ≤ q(θ) holds for any other ξ ∈ [0, θ]. In the case ξ ≤ ξ∗,

it follows g
a.e.
≤ ν which implies∫ θ

ξ
f − ν dλ ≤

∫ θ

ξ
f − g dλ = q(θ) − q(ξ) ≤ q(θ).

For ξ > ξ∗ we use Equation (3.2) and q(ξ∗) = 0 to get∫ θ

ξ
f − ν dλ = q(θ) −

∫ ξ

ξ∗
f − ν dλ− q(ξ∗) = q(θ) − q(ξ) ≤ q(θ).

We transfer this proposition to our scenario to obtain the following representation of the
queue length function.

Corollary 3.4.2. Let a dynamic flow f = (f+, f−) fulfill properties (F1) and (F2) on an
edge e up to some time H ∈ R≥0 ∪ {∞}. Then

qe(θ) = max
ξ≤θ

∫ ξ

0
f+

e − νe dλ

holds for all θ ≤ H − τe and ξ∗ := max{ξ ≤ θ | qe(ξ) = 0} is such a maximizer.

Proof. We define ge(θ) := f−e (θ + τe). Proposition 3.3.4 shows qe(θ) =
∫ θ

0 f
+
e − ge dλ for all

θ < H. Moreover, ge fulfills ge ≤ ν by (F1) and Equation (3.2) by (F2) almost everywhere
on (−∞, H − τe). Applying Lemma 3.4.1 yields the desired statement.

Lemma 3.4.3. For a locally integrable function γ with γ(θ) ≤ 0 for almost all θ < 0, the
function Γ(θ) := maxξ≤θ

∫ θ
ξ γ dλ is absolutely continuous on any interval [α, β] with α < β.

Moreover, Γ is almost everywhere differentiable with derivative

Γ′(θ) =
{
γ(θ), if Γ(θ) > 0,
0, otherwise,

and γ(θ) ≤ 0 holds for almost all θ with Γ(θ) = 0.

Proof. We begin by showing that Γ is absolutely continuous on any interval [α, β]. For the
most part, we follow the proof of the Fundamental Theorem of Lebesgue Integral Calculus
as explained in [3, Theorem 4.4.1].

As γ is locally integrable, we have
∫ β

α |γ| dλ < ∞. By [3, Proposition 2.5.8], for any ε > 0
there exists δ > 0 such that for any measurable set A with λ(A) < δ we have

∫
A |γ| dλ < ε.

Now, let ((ai, bi))i be a finite sequence of pairwise disjoint intervals with
∑

i(bi − ai) < δ.
We have to show that

∑
i |Γ(bi) − Γ(ai)| < ε.

Claim 3.4.4. For any a < b we have ∆ := |Γ(b) − Γ(a)| ≤
∫ b

a |γ| dλ.

28

3.4 The Existence and Uniqueness of Deterministic Flows

Proof. Let ξa ≤ a and ξb ≤ b both be maximal with Γ(a) =
∫ a

ξa
γ dλ and Γ(b) =

∫ b
ξb
γ dλ. In

the case Γ(a) ≥ Γ(b), we utilize the definition of Γ to get

∆ =
∫ a

ξa

γ dλ− max
ξ≤b

∫ b

ξ
γ dλ ≤

∫ a

ξa

γ dλ−
∫ b

ξa

γ dλ =
∫ b

a
−γ dλ ≤

∫ b

a
|γ| dλ.

Now, we analyze the case Γ(b) > Γ(a). If ξb ≤ a holds true, we can show ξb = ξa: If
we assume ξb < ξa, then

∫ b
ξb
γ dλ >

∫ b
ξa
γ dλ holds by the maximality of ξb, which implies

the contradiction
∫ a

ξb
γ dλ >

∫ a
ξa
γ dλ. Assuming ξb > ξa we get

∫ a
ξa
γ dλ >

∫ a
ξb
γ dλ by the

maximality of ξa and thus
∫ b

ξa
γ dλ >

∫ b
ξb
γ dλ; another contradiction. With this observation,

we deduce
∆ =

∫ b

ξb

γ dλ−
∫ a

ξa

γ dλ =
∫ b

a
γ dλ ≤

∫ b

a
|γ| dλ.

Now the case Γ(b) > Γ(a) with ξb > a remains. Here, we have

∆ =
∫ b

ξb

γ dλ− Γ(a) ≤
∫ b

ξb

γ dλ ≤
∫ b

a
|γ| dλ. ■

The claim above implies the absolute continuity of Γ, because it shows that

∑
i

|Γ(bi) − Γ(ai)| ≤
∑

i

∫ bi

ai

|γ| dλ =
∫⋃

i
[ai,bi]

|γ| dλ < ε.

Next, we prove that on closed intervals [a, b] with a < b on which Γ is strictly positive,
there exists a common ξ ≤ a such that Γ(θ) =

∫ θ
ξ γ dλ holds for all θ ∈ [a, b]. Let ξa ∈

arg maxξ≤a

∫ a
ξ γ dλ. We define

θ := max
{
θ ∈ [a, b]

∣∣∣∣∣ ∀θ′ ∈ [a, θ] : Γ(θ′) =
∫ θ′

ξa

γ dλ
}
.

If θ = b, the claim follows directly. If we assume θ < b, there exists a sequence (θk)k∈N
with θk ∈ (θ, b], limk→∞ θk = θ and Γ(θk) ̸=

∫ θk
ξa
γ dλ. By definition of Γ we even have

Γ(θk) >
∫ θk

ξa
γ dλ. Moreover, this implies Γ(θk) = maxξ∈(θ,θk]

∫ θk
ξ γ dλ, because for ξ ≤ θ we

have ∫ θk

ξ
γ dλ ≤ Γ(θ) +

∫ θk

θ
γ dλ =

∫ θk

ξa

γ dλ < Γ(θk).

Therefore, Γ(θk) converges to 0 for k → ∞. Because Γ is continuous we derive the contra-
diction Γ(θ) = 0.

This shows that Γ is almost everywhere differentiable on the set {θ ∈ R | Γ(θ) > 0} with
Γ′(θ) = γ(θ). Being absolutely continuous on any interval implies that Γ is almost ev-
erywhere differentiable. This means that Γ is also almost everywhere differentiable in
A := {θ | Γ(θ) = 0}. As Γ is never (strictly) negative, the derivative on A can only be
0 if it exists.

It remains to show that γ(θ) ≤ 0 holds for almost all θ ∈ A. By the Lebesgue dif-
ferentiation theorem (Theorem 3.2.3), the function h(x) :=

∫ x
0 γ dλ is almost everywhere

29

3 Vickrey’s Fluid Queuing Model

differentiable with derivative γ. For θ ∈ A with Γ′(θ) = 0 and h′(θ) = γ(θ) we have

0 = Γ′(θ) = lim
x ↓θ

Γ(x) − Γ(θ)
x− θ

≥ lim
x ↓θ

∫ x
θ γ dλ−

∫ θ
θ γ dλ

x− θ
= lim

x ↓θ

h(x) − h(θ)
x− θ

= γ(θ),

which concludes the proof.

Lemma 3.4.5. Let f ∈ R be an inflow rate and let ν ∈ L1
loc(R,R≥0) be a non-negative

locally integrable capacity rate. Then the following statements hold true.

(i) There exists a rate function g ∈ R that fulfills g ≤ ν and Equation (3.2) almost
everywhere.

(ii) If another g̃ ∈ L1
loc(R,R≥0) fulfills g̃ ≤ ν and Equation (3.2) almost everywhere on

(−∞, H) for some H ∈ R≥0 ∪ {∞}, then g̃|(−∞,H)
a.e.= g|(−∞,H) holds true.

This means, there exists a unique g ∈ L1
loc(R,R≥0) fulfilling g ≤ ν and Equation (3.2)

almost everywhere. Moreover, g vanishes almost everywhere on (−∞, 0), implying g ∈ R.

Proof. (i). By Lemma 3.4.3, the function q(θ) := maxξ≤θ

∫ θ
ξ f − ν dλ is almost everywhere

differentiable. We define g(θ) := f(θ) − q′(θ) whenever q′(θ) is defined, and g(θ) := 0
otherwise. Then, we have q(θ) =

∫ θ
0 f − g dλ and g automatically fulfills Equation (3.2)

almost everywhere.
It remains to show that g is bounded from above by ν almost everywhere. For q(θ) > 0,

this is given by Equation (3.2) already. Hence, we can concentrate on θ with q(θ) = 0.
However, Lemma 3.4.3 states q′(θ) = 0 and f(θ) ≤ ν(θ) for almost all such θ.

(ii). Assume there is a locally integrable function g̃ fulfilling g̃ ≤ ν and Equation (3.2)
almost everywhere on (−∞, H). Applying Lemma 3.4.1 for any θ < H yields∫ θ

0
f − g̃ dλ = max

ξ≤θ

∫ θ

ξ
f − ν dλ =

∫ θ

0
f − g dλ.

Hence, g and g̃ coincide almost everywhere on (−∞, H) (cf. [3, Theorem 4.4.2]).

So far, we have proved that given any total inflow rate function f+
e there exists a rate

function g fulfilling g ≤ ν and Equation (3.2). In our scenario this shows that the total
outflow rate function f−e is uniquely determined by the total inflow rate function and prop-
erties (F1) and (F2). We will now extend this result to multicommodity inflow and outflow
rates in such a way that property (F3) holds too.

Theorem 3.4.6. Let I be a finite set of commodities and let (f+
i,e)i∈I ∈ RI be a family of

inflow rates on an edge e. Then the following statements hold true.

(i) There exist deterministic outflow rates (f−i,e)i∈I ∈ RI corresponding to (f+
i,e)i∈I .

(ii) If (h−i,e)i∈I ∈ L1
loc(R,R≥0)I also fulfill (F1), (F2) and (F3) almost everywhere on

(−∞, H) for some H ∈ R≥0 ∪{∞}, then h−i,e|(−∞,H)
a.e.= f−i,e|(−∞,H) holds for all i ∈ I.

We call (f−i,e)i∈I the (unique) deterministic outflow rates corresponding to (f+
i,e)i∈I . Given

inflow rates on all edges (f+)i∈I,e∈E we call (f+, f−) the (unique) deterministic flow corre-
sponding to (f+

i,e)i∈I,e∈E.

30

3.4 The Existence and Uniqueness of Deterministic Flows

Proof. (i). Let f+
e :=

∑
i∈I f

+
i,e ∈ R denote the total rate function, for which Lemma 3.4.5

yields the unique existence of a function ge ∈ R fulfilling ge ≤ νe and Equation (3.2) almost
everywhere. We define

f−i,e(θ) :=

ge(θ − τe) · f+
i,e(ξθ)

f+
e (ξθ) , if f+

e (ξθ) > 0,
0, otherwise,

where ξθ := max{ξ | Θ(ξ) := ξ + τe +
∫ ξ

0 f
+
e − ge dλ/νe = θ}. We aim to show

f−e (θ) :=
∑
i∈I

f−i,e(θ) = ge(θ − τe)

for almost all θ ∈ R. Once this is proven, the queue qe(θ) coincides with
∫ θ

0 f
+
e − ge dλ (and

therefore Te coincides with Θ), which can be seen by applying Lemma 3.4.1:

qe(θ) :=
∫ θ

0
f+

e dλ−
∫ θ+τe

0
f−e dλ = −

∫ −τe

0
f+

e − ge dλ+
∫ θ

0
f+

e − ge dλ

= − max
ξ≤−τe

∫ ξ

0
f+

e − νe dλ+
∫ θ

0
f+

e − ge dλ =
∫ θ

0
f+

e − ge dλ.

Therefore, the defined flow rates fulfill properties (F1), (F2) and (F3) through ge ≤ νe and
Equation (3.2) almost everywhere.

If f+
e (ξθ) is positive, then the claim follows directly from the definition of f−i,e(θ). There-

fore, we only analyze θ with f+
e (ξθ) = 0.

The function Θ is non-decreasing and absolutely continuous on any interval [a, b]. We
define the Lebesgue-null set

A :=
{
ξ ∈ R

∣∣∣ Θ′(ξ) ̸= 1 + (f+
e (ξ) − ge(ξ))/νe or Equation (3.2) does not hold in ξ

}
and the set of points where the derivative of Θ vanishes

B := {ξ ∈ R | Θ is differentiable in ξ with Θ′(ξ) = 0}.

By the Luzin N property described in Proposition 3.2.5 all absolute continuous functions
map null sets to null sets, which implies λ(Θ(A)) = 0. Moreover, Sard’s theorem (The-
orem 3.2.8) states that Θ(B) is also a Lebesgue-null set. Therefore, Θ(A) ∪ Θ(B) is a
Lebesgue-null set, and we take θ ∈ Θ(A)c ∩ Θ(B)c. Since Θ(ξθ) = θ, we know ξθ /∈ A ∪ B.
The monotonicity of Θ together with ξθ /∈ A ∪B implies

0 < Θ′(ξθ) = 1 + f+
e (ξθ) − ge(ξθ)

νe
,

which is equivalent to ge(ξθ) < f+
e (ξθ)+νe = νe. By Equation (3.2) this can only be the case,

if
∫ ξθ

0 f+
e −ge dλ = 0 and ge(ξθ) = f+

e (ξθ) = 0 hold true. The observation θ = Θ(ξθ) = ξθ +τe

concludes the proof of
∑

i∈I f
−
i,e(θ) = 0 = ge(θ − τe).

(ii). Let (h−i,e)i∈I ∈ L1
loc(R,R≥0) fulfill properties (F1), (F2) and (F3) in the place of

(f−i,e)i∈I almost everywhere on (−∞, H) for some H ∈ R≥0 ∪ {∞}. We want to show that

31

3 Vickrey’s Fluid Queuing Model

h−i,e coincides almost everywhere on (−∞, H) with f−i,e for all i ∈ I. The following claim is
the essential result for this proof:

Claim 3.4.7. The functions h−e and f−e coincide almost everywhere on (−∞, H).

Proof. Proposition 3.3.4 states that qh
e (θ) =

∫ θ
0 f

+
e − g̃e dλ holds for all θ < H − τe with

g̃e(θ) := h−e (θ + τe) =
∑

i∈I h
−
i,e(θ + τe). Now, (F2) implies that g̃e fulfills Equation (3.2)

almost everywhere on (−∞, H−τe). The same holds true for ge with ge(θ) = f−e (θ+τe). (F1)
implies that both functions are bounded from above by νe on (−∞, H − τe). Lemma 3.4.5
states that any two functions with these properties are identical almost everywhere on
(−∞, H − τe); therefore h−e and f−e coincide almost everywhere on (−∞, H). ■

By the above claim, qh
e and T h

e also coincide with qf
e and T f

e on (−∞, H−τe), respectively.
Property (F3) now implies h−i,e(θ) = f−i,e(θ) for almost all θ < H and all i ∈ I.

As the final property in this chapter we show that, if the inflow rates of two deterministic
flows match up to some time H, then their outflow rates match up to time Te(H), too.

Lemma 3.4.8. Let (f+, f−), (g+, g−) be two flows that are deterministic on an edge e ∈ E.
If their inflow rates on e coincide up to some time H ∈ R≥0, i.e.

∀i ∈ I : f+
i,e|(−∞,H)

a.e.= g+
i,e|(−∞,H),

then the corresponding queue functions qf
e and qg

e and hence the exit times T f
e and T g

e

coincide on (−∞, H]. Moreover, their outflow rates on e coincide up to time Te(H), i.e.

∀i ∈ I : f−i,e|(−∞,Te(H))
a.e.= g−i,e|(−∞,Te(H)).

Proof. By Corollary 3.4.2, the queue functions qf
e |(−∞,H] and qg

e |(−∞,H] only depend on
f+

e |(−∞,H) and g+
e |(−∞,H), respectively. Therefore, both queue functions and both exit

times are identical up to time H.
By Proposition 3.3.2 both queue functions qf

e and qg
e are positive on (H,H + qe(H)/νe).

Hence, for θ ∈ (H + τe, Te(H)), the queues of both flows are non-empty at time θ − τe

implying g−e (θ) = νe = f−e (θ) for almost all θ ∈ (H + τe, Te(H)) according to property (F2).
For almost all θ < H + τe, property (F2) implies

g−e (θ) =
{
νe, if qe(θ − τe) > 0,
g+

e (θ − τe) = f+
e (θ − τe), otherwise,

}
= f−e (θ).

By the Luzin N property of Te, the set of points θ < Te(H) that fulfill the condition

∃ ξ ≤ H : Te(ξ) = θ ∧
(
f−e (θ) ̸= g−e (θ) ∨ ∃i ∈ I : f+

i,e(ξ) ̸= g+
i,e(ξ)

)
is a Lebesgue-null set. For almost all other θ < Te(H) we define ξ := min{ξ ≤ H |Te(ξ) = θ},
and we conclude using property (F3)

g−i,e(θ) =

g−e (θ) · g+
i,e(ξ)

g+
e (ξ) , if g+

e (ξ) > 0,

0, otherwise,

 =

f−e (θ) · f+
i,e(ξ)

f+
e (ξ) , if f+

e (ξ) > 0,

0, otherwise,

 = f−i,e(θ).

32

4 Dynamic Prediction Equilibria

In this chapter, a game theoretical structure is added to the flows introduced in the previous
section. We describe the behavior of the infinitesimally small particles by interpreting them
as agents belonging to one of finitely many commodities. An agent shares the same origin
and destination nodes with all other agents of his commodity. Moreover, all agents of a
commodity use the same prediction method which can be invoked at any time θ̄ to retrieve
a (not necessarily accurate) traffic forecast of all edges. This prediction method receives the
historical data of the total traffic flow up to time θ̄ as an input.

We impose an important assumption on the agents’ behavior: The agents act as if the
forecasts retrieved by their prediction methods accurately describe the future traffic (al-
though it may not). However, whenever there is a new routing decision to take, a new
prediction is triggered. Therefore, when an agent arrives at an intermediate node at some
time θ, and they have to choose which of the outgoing edges to enter, they will retrieve a
new forecast at time θ̄ = θ and calculate a shortest path to their destination according to
the new traffic forecast. Then, they decide to enter the first edge on this shortest path. If
all agents adapt to this behavior, a dynamic prediction equilibrium (DPE) emerges. DPE
were first introduced in [13]. Here, we use the same concepts, although with a more general
class of predictors.

In the first section of this chapter, the behavioral model as well as the notions of a pre-
dictor and a dynamic prediction equilibrium are introduced. To illustrate the definition, an
example of such an equilibrium is analyzed in Section 4.2. Section 4.3 provides a recapit-
ulation of some mathematical tools necessary to prove the existence of dynamic prediction
equilibria. The existence of DPE is then proven in Section 4.4 under quite mild assumptions
on the predictors. To apply the existence theorem more easily, Section 4.5 shows sufficient
conditions for the regularity of predictors. Section 4.6 introduces several example predic-
tors, that were considered in this thesis, and their compatibility with the existence theorem
is analyzed. Finally, a comparison with other popular models of equilibria is carried out in
Section 4.7.

4.1 Definition
Predicting future travel times in Vickrey’s fluid queuing model comes done to predicting the
queue length functions qe for all e ∈ E. This inspires the following definition of a predictor.

Definition 4.1.1. A predictor of a commodity i ∈ I is a function

q̂i : R × R × F → RE
≥0, (θ, θ̄, f) 7→

(
q̂i,e(θ, θ̄, f)

)
e∈E

,

where F := (R × R)I×E denotes the set of all dynamic flows. We call q̂i,e(θ, θ̄, f) the
predicted queue length of edge e at time θ as predicted at time θ̄ with the historical flow f .

33

4 Dynamic Prediction Equilibria

Based on that, we define the predicted dynamic cost ĉi,e(θ, θ̄, f) := q̂i,e(θ, θ̄, f)/νe at time
θ as predicted at time θ̄. Furthermore, T̂i,e(θ, θ̄, f) := θ + ĉi,e(θ, θ̄, f) denotes the predicted
exit time of edge e when e at time θ as predicted at time θ̄. Given a path P = e1 · · · ek we
define the predicted exit time when entering path P at time θ as predicted at time θ̄ as

T̂i,P (θ, θ̄, f) :=
(
T̂ek

(· , θ̄, f) ◦ · · · ◦ T̂e1(· , θ̄, f)
)

(θ).

As in Chapter 2, let Pv,w denote the set of all simple paths from v to w. We define
l̂i,v(θ, θ̄, f) := minP∈Pv,ti

T̂i,P (θ, θ̄, f) as the earliest predicted arrival time at the destination
ti when starting in v ∈ Vi at time θ as predicted at time θ̄. A path that attains this minimum
is called a predicted shortest v-ti-path at time θ as predicted at time θ̄.

We can only restrict ourselves to simple paths in the above definition, if waiting at a
node, or traveling through a short cycle, is never helpful. This can be realized by assuming
the FIFO-compatibility of predictors:

Definition 4.1.2. A predictor q̂i is FIFO-compatible if for all θ̄ ∈ R and for all deterministic
dynamic flows f ∈ F the predicted dynamic costs (ĉi,e(· , θ̄, f))e∈E are FIFO-ordered.

It is worth noting that a predictor q̂i is FIFO-compatible if and only if

q̂i,e(θ2, θ̄, f) − q̂i,e(θ1, θ̄, f) ≥ (θ2 − θ1) · (−νe)

holds for any θ1 < θ2, prediction time θ̄ and deterministic flow f . For a FIFO-compatible
predictor the dynamic variant of the triangle inequality in Proposition 2.2.2 states that

l̂i,v(θ, θ̄, f) ≤ l̂i,w(T̂vw(θ, θ̄, f), θ̄, f)

holds for all θ, θ̄ ∈ R and feasible flows f ∈ F .

Definition 4.1.3. Given a predictor q̂i, the predicted delay when entering edge e = vw ∈ Ei

at time θ as predicted at time θ̄ using the historical flow data f is given as

∆̂i,e(θ, θ̄, f) := l̂i,w
(
T̂i,e(θ, θ̄, f), θ̄, f

)
− l̂i,v(θ, θ̄, f).

An edge e = vw ∈ Ei is called active for commodity i ∈ I at time θ ∈ R as predicted at
time θ̄, if the predicted delay ∆̂i,e(θ, θ̄, f) = 0 vanishes. All edges for commodity i that are
active at time θ as predicted at time θ̄ are collected in the set Êi(θ, θ̄, f).

In other words, an edge is active at some time θ if it lies on a shortest v-ti-path at time θ
as predicted at time θ̄. With these fundamental definitions we are able to define the state
of equilibrium in which the behavior of agents matches the prior description.

Definition 4.1.4. A pair (q̂, f) of a set of predictors q̂ = (q̂i)i∈I and a dynamic flow f is a
(partial) dynamic prediction equilibrium up to time H ∈ R∪ {∞} if f is feasible up to time
H and for all e ∈ E, i ∈ I and almost all θ < H it holds that

f+
i,e(θ) > 0 =⇒ e ∈ Êi(θ, θ, f).

For H = ∞ the pair (q̂, f) is called a dynamic prediction equilibrium (DPE). Moreover, we
call f a dynamic prediction flow with respect to the predictor q̂.

34

4.2 Example of a Dynamic Prediction Equilibrium

A dynamic prediction equilibrium can be interpreted as follows: If agents of a commodity
i enter an edge e = vw at some time θ, expressed by f+

i,e(θ) > 0, then this edge must lie on
a shortest v-ti-path at time θ as predicted at time θ.

4.2 Example of a Dynamic Prediction Equilibrium
Before we analyze the properties of dynamic prediction equilibria, we first take a look at an
example of such an equilibrium to get a better intuition of these mathematical objects. For
that we introduce a first, simple predictor that demonstrates the capabilities of the model.

Definition 4.2.1. Given some prediction horizon H ∈ R>0 ∪ {∞}, the linear predictor q̂L
i,e

is defined as
q̂L

i,e(θ, θ̄, q) :=
(
qe(θ̄) + ∂−qe(θ̄) · min{θ − θ̄, H}

)+
,

where (x)+ := max{x, 0} denotes the positive part of x ∈ R and ∂−qe denotes the left-side
derivative of qe.

In other words, the linear predictor states that the queue length grows with the current
derivative up to some prediction horizon H. Starting from H it assumes a constant course.

For the following example, we will assume that no prediction horizon is given, i.e. H = ∞.
The example network is shown in Figure 4.1(a). All edges e except edge ut have a capacity
of νe = 2 and edge ut has a capacity of 1. Moreover, all edges e except vw have a transit
time of τe = 2. Edge vw has a transit time of τvw = 2.

There is a single commodity with a constant network inflow rate of u|[0,∞) ≡ 2, source
node s and sink node t. As the edge ut is the only edge with a capacity smaller than 2, it
is the only edge that might build up a queue. This implies that for any edge e other than
ut, the predicted queue length can be determined as q̂L

e (θ, θ̄, f) = 0.
Particles starting at the source node s have to decide between the upper path sut and the

lower path svwt. This decision is based on the predicted exit times of both paths. Because
no queues will ever be predicted in the lower path, the predicted exit time simplifies to
T̂svwt(θ, θ̄, f) = θ + 4. For the upper path, particles starting at time θ first travel through
the first edge with a transit time of 1, and then might have to enqueue at edge ut with a
predicted queue length q̂L

ut(θ+ 1, θ̄, f). Thus, the predicted exit time of the upper path can
be computed as T̂sut(θ, θ̄, f) = θ + 2 + q̂L

ut(θ + 1, θ̄, f).
This means, for particles starting at s at time θ̄ the lower path is the predicted shortest

path whenever the predicted queue length of ut at time θ̄ + 1 exceeds the value 2. If that
value is smaller than 2, the upper path is the preferred alternative.

For particles starting at times θ̄ ≤ 1, the predicted queue length of ut at time θ̄ + 1
vanishes, and therefore all particles start streaming into the upper path which is shown in
Figure 4.1(b).

Starting from time θ̄ = 1, a queue starts to build up and thus its derivative jumps to 1.
However, for any θ̄ ∈ [1, 2], the predicted queue length at time θ̄ + 1 does still not exceed
the value 2. Hence, the upper path remains the preferred path such that it is the only path
used up until time 2. This can be seen in Figure 4.1(c).

Figure 4.1(c) also shows that, starting from time θ̄ = 2, the predicted queue length
exceeds the value 2 making the lower path the preferred path for the first time. Therefore,
particles now start flowing into the edge sv instead of su. This behavior continues as long

35

4 Dynamic Prediction Equilibria

s u t

v w

(a) The dynamic prediction flow at time θ̄ = 0.

s u t

v w

(b) The dynamic prediction flow at time θ̄ = 1.

s u t

v w 0 1 2 3 4
θ

2

θ̄ + 1

qut

q̂L
ut(· , θ̄, f)

(c) The dynamic prediction flow at time θ̄ = 2.

s u t

v w 0 1 2 3 4
θ

2

θ̄ + 1

qut

q̂L
ut(· , θ̄, f)

(d) The dynamic prediction flow at time θ̄ = 3.

s u t

v w 0 1 2 3 4
θ

2

θ̄ + 1

qut
q̂L

ut(· , θ̄, f)

(e) The dynamic prediction flow at time θ̄ = 4.

Figure 4.1: The evolution of a dynamic prediction equilibrium using the linear predictor.

36

4.3 Fundamentals for the Existence Theorem

0 1 2 3 4 5 6 7 8 9
θ

qut

2

Figure 4.2: The evolution of the queue length qut of a dynamic prediction flow up to time
θ = 10.

as particles still arrive at node u: until θ̄ = 3. Figure 4.1(d) shows the equilibrium flow at
time θ̄ = 3.

Once no more particles arrive at node u, the edge can process its queue and the derivative
of the queue length becomes −1. At this point, the predicted queue length at time θ̄ + 1
jumps from value 3 to the value 1. Hence, particles start to choose the upper path again as
long as no particles arrive at node u as depicted in Figure 4.1(e).

At time θ̄ = 4 particles arrive at node u, the queue length of ut will increase, and particles
will start to choose the lower path again. This switching behavior between the upper and
the lower path continues forever accordingly. Figure 4.2 shows the evolution of the queue
up to time θ = 10.

4.3 Fundamentals for the Existence Theorem
Before we may show that under certain conditions a dynamic prediction equilibrium always
exists, we first need to introduce various mathematical tools.

The extended norm and its topology

The following sections involve the space of real-valued continuous functions C(Rd,R) on Rd

in various settings. Unbounded functions on Rd hinder us from installing the uniform norm
on these function spaces. However, as we still want to work with the same topology induced
by the uniform norm, we “extend” the notion of a norm to allow the value ∞:

Definition 4.3.1. Given a vector space X on R, a function ∥ · ∥ : X → R≥0 ∪ {∞} is called
an extended norm on X, if it fulfills the following conditions:

(i) ∥x∥ = 0 ⇔ x = 0 for all x ∈ X,

(ii) ∥α · x∥ = |α| · ∥x∥ for all α ∈ R \ {0},

(iii) ∥x+ y∥ ≤ ∥x∥ + ∥y∥ for all x, y ∈ X.

An extended norm ∥ · ∥ induces a topology on X in the same way a usual norm would:
A set B ⊆ X is called ∥ · ∥-open if for every x ∈ B there exists some ε > 0 such that

37

4 Dynamic Prediction Equilibria

Uε(x) := {y ∈ X | ∥x− y∥ < ε} ⊆ B. Moreover, limits of sequences in this topology behave
in accordance to the extended norm. For a general topology X with open sets τ , we say a
sequence (xn)n∈N converges to x ∈ X if for every open set U ∈ τ containing x there is some
N ∈ N with xn ∈ U for all n ≥ N .

Proposition 4.3.2. Let X be a vector space equipped with the topology induced by an
extended norm ∥ · ∥. Given a sequence (xn)n∈N with xn ∈ X and a point x ∈ X, the
following statements are equivalent:

(i) The sequence (xn)n∈N converges to x.

(ii) For n → ∞, ∥xn − x∥ converges to 0.

Proof. Assume (i). Then, for every ε > 0, there is some N ∈ N with xn ∈ Uε(x) for all
n ≥ N . Therefore, ∥xn − x∥ ≤ ε for all n ≥ N , which implies that the sequence converges
to 0.

Assume (ii) and let U be a ∥ · ∥-open set containing x. Then there exists some ε > 0 with
Uε(x) ⊆ U . Furthermore, there exists N ≥ 0 such that ∥xn − x∥ < ε and thus xn ∈ U for
all n ≥ N .

Finally, we note that a vector space X equipped with an extended norm ∥ · ∥ is locally
metrizable, i.e. for every point x ∈ X there is a neighborhood U of x such that U is
metrizable: We select the neighborhood U := {y ∈ X | ∥x− y∥ < ∞} together with the
metric dU (y, z) := ∥y − z∥. Every locally metrizable vector space is first-countable, implying
that X is a sequential vector space. This means that all properties of its topology can be
expressed using sequences.

Definition 4.3.3. A topological space X with open sets τ is called a sequential space, if it
fulfills the so-called universal property of sequential spaces:

For every topological space Y , a function f : X → Y is continuous if and only if it is
sequentially continuous, i.e. if for every sequence (xn)n∈N converging to some x ∈ X, the
sequence (f(xn))n∈N converges to f(x).

In this general setting a function f : X → Y is called continuous, if for every open set U
in Y , the inverse image f−1(U) is an open set in X.

Proposition 4.3.4. A topological space induced by an extended norm is sequential.

Proof. Let Y be a topological space and f : X → Y continuous and let (xn)n∈N be a sequence
in X converging to some x ∈ X. Let U be any open set in Y containing f(x). Then f−1(U)
is an open set in X containing x. Hence, there is some N ∈ N with xn ∈ f−1(U) for all
n ≥ N . Moreover, f(xn) ∈ U for all of these n ≥ N implying that (f(xn))n∈N converges to
f(x) in Y , and f is sequentially continuous.

Now, assume that f is sequentially continuous. We aim to show that f−1(U) is open in
X for any open set U in Y . Assume, f−1(U) is not open. This means that there exists some
x ∈ f−1(U) such that Uε(x) ⊈ f−1(U) holds for every ε > 0. Therefore, for every n ∈ N
there exists xn with ∥x− xn∥ < 1/n and xn /∈ f−1(U). The sequence (xn)n∈N converges to
x in X. As f is sequentially continuous, the sequence (f(xn))n∈N converges to f(x) in Y .
Because U is open, there exists N ∈ N with f(xn) ∈ U , or equivalently xn ∈ f−1(U), for all
n ≥ N ; a contradiction.

38

4.3 Fundamentals for the Existence Theorem

Now that we have build up enough trust in the topology induced by an extended norm
and in its behavior, we introduce the extended uniform norm on the continuous function
spaces.

Definition 4.3.5. The extended (uniform) norm on the space C(Rn,R) is defined as

∥f∥∞ := sup
x∈Rn

|f(x)| .

For k ∈ N the extended (uniform) norm on the vector space C(Rn,Rm) is given as

∥(f1, . . . , fm)∥∞ := max
i∈[m]

∥fi∥∞ .

The space Lp(S)d and its continuous dual space
Showing the existence of DPE involves the existence of variational inequalities studied in
functional analysis. In the following, we introduce some fundamental definitions and theo-
rems. We essentially follow the introduction by Royden in [24, Section 8.1].

For a measurable set S ⊆ R and some p ≥ 1, we define the function space

Lp(S) :=
{
f : S → R

∣∣∣∣∣ ∥f∥p :=
(∫

S
|f |p dλ

)1/p

< ∞
}
.

Identifying any two functions f, g ∈ Lp(S) that fulfill f a.e.= g yields the Banach space

Lp(S) := Lp(S)⧸a.e.= ,

together with its norm ∥·∥p.
The continuous dual space X ′ of a normed vector space X over R is the set of all bounded

linear functionals f : X → R. Here, a linear functional f is called bounded if ∥f∥X′ :=
supx∈X |f(x)| is finite. Moreover, ∥ · ∥X′ defines a norm on X ′. The canonical pairing
between a Banach space X and its continuous dual refers to ⟨f, x⟩ := f(x) for f ∈ X ′,
x ∈ X. The term continuous in continuous dual space stems from the following observation.

Proposition 4.3.6 ([24, Theorem 1 in Section 13.2]). A linear mapping between two normed
spaces is continuous if and only if it is bounded.

The Riesz Representation Theorem now leads to the following insight into the dual space
of Lp(S):

Theorem 4.3.7 (Riesz Representation Theorem for Lp(S) [24, Section 8.1]). Let S be a
measurable set, 1 ≤ p < ∞ and let q be the conjugate of p with 1/p + 1/q = 1. For each
g ∈ Lq(S) the linear functional Tg(f) :=

∫
S g · f dλ is bounded and hence Tg ∈ Lp(E)′.

Moreover, for each T ∈ Lp(S)′ there exists a unique g ∈ Lq(S) with

T = Tg and ∥T∥Lp(S)′ = ∥g∥q .

In other words, the continuous dual space of Lp(S) is isomorphic to Lq(S) where q is
the conjugate with 1/p + 1/q = 1. The canonical pairing between the two spaces is given as
⟨g, f⟩ :=

∫
S g · f dλ < ∞ for g ∈ Lq(S) and f ∈ Lp(S).

39

4 Dynamic Prediction Equilibria

For vectors of p-integrable functions living in Lp(S)d := (Lp(S))d with d ∈ N it is easy to
show that the continuous dual space is Lq(S)d with 1/p + 1/q = 1 together with the pairing

⟨f, g⟩ =
d∑

i=1

∫
S
gi · fi dλ

for f ∈ Lp(S)d and g ∈ Lq(S)d and the norm ∥g∥Lq(S)d =
∑d

i=1 ∥gi∥q.

The Weak Topology and Sequential Weak-Strong Continuity

As in [24, Section 11.4] we define the weak topology for a non-empty set X and a collection
of mappings F = (fi : X → Yi)i∈I where each Yi is a topological space, as the weakest
topology that makes all mappings fi continuous, i.e. the smallest topology containing the
open sets {f−1

i (U) | i ∈ I, U open in Yi}.
For a normed vector space X, the weak topology of X refers to the weakest topology

that makes all mappings ⟨f, · ⟩ = f ∈ X ′ continuous. Here, whenever we refer to the weak
topology, it will be stated explicitly. In any other case, we use the “strong” topology induced
by the norm of X. We say a sequence (xi)i∈N in a normed space X converges weakly to some
x ∈ X, if the sequence converges to x in the weak topology. The following proposition, as
given in [24, Section 11.4], characterizes weak convergence of sequences using the mappings
of the continuous dual space:

Proposition 4.3.8. A sequence (xi)i∈N in a normed space X converges weakly to x ∈ X if
and only if the pairing ⟨f, xi⟩ converges to ⟨f, x⟩ for every f ∈ X ′.

Using these preliminaries we can define sequential weak-strong continuity:

Definition 4.3.9. A mapping f : X → Y from a normed space X into another normed
space Y is called sequentially weak-strong continuous if limi→∞ ∥f(xi) − f(x)∥Y = 0 holds
true for every sequence (xi)i∈I converging weakly to some x in X.

Reflexive Banach Spaces

The following definitions are based on [24, Section 14]. For a normed vector space X, the
linear mapping J : X → X ′′ with J(x) = (f 7→ f(x)) is called the natural embedding of X
into its bidual space X ′′ := (X ′)′. A normed vector space X is called reflexive if the natural
embedding is surjective.

For proving the existence of DPE, we are interested in the space Lp(S) for a measurable
set S ⊆ R. Here, [24, Theorem 8 in Section 19.4] proves that Lp(S) is reflexive for all
1 < p < ∞. This result can easily be extended to the case Lp(S)d for d ∈ N.

Solutions to Variational Inequalities

In this subsection, we formulate the theorem necessary to show the existence of DPE. The
underlying theory involves functional analysis and solutions of variational inequalities. The
main statement this section builds upon is a generalization of the results by Browder and
Minty [6, 20]. This generalization was first introduced by Haïm Brézis in [4, Théorème 24].

40

4.4 Existence of Dynamic Prediction Equilibria

Lions has shown a variant of Brézis’s very general theorem in [15, Théorème 8.1 in
Chapitre 2]. In contrast to Brézis, Lions uses the rather basic concepts introduced in
the first part of this section to define pseudo-monotone operators in [15, Définition 2.1].

Definition 4.3.10. Given a reflexive Banach space X we call a mapping A : K → X ′

pseudo-monotone, if A is bounded and if for every sequence (xi)i∈N converging weakly to x
in X fulfilling

lim sup
i∈N

⟨A(xi), xi − x⟩ ≤ 0

it holds that
∀y ∈ K : lim inf

i∈N
⟨A(xi), xi − y⟩ ≥ ⟨A(x), x− y⟩ .

Theorem 4.3.11 ([15, Théorème 8.1 in Chapitre 2]). Let X be a reflexive Banach space,
let K be a non-empty, closed, and convex subset K ⊆ X, and let A : K → X ′ be a pseudo-
monotone mapping. Then for any f ∈ X ′ there exists a solution u ∈ K to the following
variational inequality:

∀v ∈ K : ⟨A(u), v − u⟩ ≥ ⟨f, v − u⟩ .

Cominetti et al. formulated a useful special case of this theorem for the existence of
dynamic Nash equilibrium flows in [7]. This corollary is presented in the following:

Corollary 4.3.12 ([7, Section 5]). Let X be a reflexive Banach space and let A : K → X ′

be a sequentially weak-strong continuous map defined on a non-empty, closed, bounded and
convex set K ⊆ X. Then there exists a solution u ∈ X to the variational inequality

∀v ∈ X : ⟨A(u), v − u⟩ ≥ 0.

4.4 Existence of Dynamic Prediction Equilibria
In this section, the existence of dynamic prediction equilibria under certain conditions is
proven. However, an equilibrium might not exist for general predictors. In the following
example the discontinuity of the predictor is exploited to show that there is no dynamic
prediction flow with respect to this predictor.

Example 4.4.1. We consider the network given in Figure 4.3 with a single commodity with
source s, sink t and network inflow rate u|[0,∞) ≡ 2. Each edge of the network has transit
time τe = 1 and capacity νe = 2 except edge st which has a capacity of νst = 1. We define
the non-continuous predictor

q̂e(θ, θ̄, f) :=
{
qf

e (θ̄), if qf
e (θ̄) < 1,

2, otherwise,

and we assume there exists a dynamic prediction flow with respect to q̂.
On the interval [0, 1) only edge st is active, as its queue length qf

st(θ) must be smaller
than 1 and thus T̂st(θ, θ, f) < 2 ≤ T̂svt(θ, θ, f) holds for θ ∈ [0, 1). Hence, f must fulfill
f+

st |[0,1]
a.e.≡ 2, f+

sv|[0,1]
a.e.≡ 0 a.e.≡ f+

vt|[0,1] and qf
st(1) = 1.

41

4 Dynamic Prediction Equilibria

s

v

t

(a) The network at time θ = 0.

s

v

t

(b) Any dynamic prediction flow at time θ = 1.

Figure 4.3: The network considered in Example 4.4.1.

For θ ≥ 1 the queue qf
st(θ) must be at least of length 1: The setO := {θ | qf

st(θ) < 1} is open
and at times in O only edge st is active, implying f+

st |O
a.e.≡ 2 and f+

e2 |O
a.e.≡ 0. We partition

O into an at most countably infinite union O =
⋃

j∈J(aj , bj) of disjoint, open intervals. Let
(aj , bj) be one of these intervals with aj ≥ 1. By continuity, we have qf

st(aj) = 1 and there
exists θ ∈ (aj , bj) with qf

st(ξ) > 0 for all ξ ∈ (aj , θ]. Property (F2) implies

qf
st(θ) = qf

st(aj) +
∫ θ

aj

f+
st dλ−

∫ θ+τst

aj+τst

f−st dλ = 1 + (θ − aj) · (2 − 1) > 1.

This contradicts θ ∈ O and thus O∩ [1,∞) is empty. Hence, edge sv is the only active edge
from time 1 onwards. This, however, implies that only edge sv is used starting from time 1
such that the queue at edge sv depletes at time 2; again a contradiction.

Next, we discuss several properties of predictors that ensure the existence of a dynamic
prediction equilibrium. As we have seen above, the predictors must fulfill some regularity
conditions. The following condition will ensure existence of dynamic prediction flows by
using the existence of solutions to the variational inequality of Brézis.

Definition 4.4.2. A predictor q̂i is called p-continuous for some p ≥ 1, if it fulfills the
following two conditions:

(i) For every deterministic flow f with f+ ∈ Lp
loc(R,R≥0)I×E the function q̂i,e(· , · , f) is

continuous, i.e. q̂i,e(· , · , f) ∈ C(R2,R≥0), for every e ∈ E.

(ii) For every edge e ∈ E and M > 0 and any compact interval D, the mapping

Lp([0,M],R≥0)I×E → C([0,M] ×D,R≥0), f+ 7→ q̂i,e(· , · , f),

where f denotes the deterministic flow with inflow rates 1[0,M] · f+, is sequentially
weak-strong continuous.

The final property we require is that predictors cannot use the future evolution of the flow

42

4.4 Existence of Dynamic Prediction Equilibria

in their predictions. This means, we want to be able to make predictions solely based on
the past evolution of the dynamic flow. We formalize this notion in the following definition.

Notation 4.4.3. For a vector of functions g = (gi)i∈[d] with gi : R → R and some H ∈ R, we
write g≤H := (gi|(−∞,H])i∈[d] for the restriction of the functions to (−∞, H].

For two vectors of functions g = (gi)i∈[d], h = (hi)i∈[d] with gi, hi : X → R, X ⊆ R, we
write g a.e.=

c.w.
h if gi

a.e.= hi holds for all i ∈ [d].

Definition 4.4.4. A predictor q̂i is called oblivious, if it fulfills the condition

f≤θ̄
a.e.=
c.w.

f ′≤θ̄
=⇒ q̂i(· , θ̄, f) = q̂i(· , θ̄, f ′),

for all θ̄ ∈ R and deterministic flows f, f ′ ∈ (R × R)I×E .

The following theorem shows that we can extend any dynamic prediction flow by some
strictly positive amount. This will suffice to prove the existence of dynamic prediction
equilibria in Theorem 4.4.13.

Theorem 4.4.5. Let I be a finite set of commodities with network inflow rates ui ∈ R with
ui ∈ Lp

loc(R,R≥0). Let q̂ = (q̂i)i∈I be a set of oblivious, p-continuous and FIFO-compatible
predictors with p > 1 and assume τe is strictly positive for all e ∈ E.

Then we can extend the horizon of any locally p-integrable partial dynamic prediction flow.
More specifically, given a dynamic prediction flow f up to time H with f+ ∈ Lp

loc(R,R)I×E,
there exists a dynamic prediction flow h up to time H + α with α := mine∈E τe such that
h≤H

a.e.=
c.w.

f≤H and h+ ∈ Lp
loc(R,R)I×E hold.

The proof of the existence theorem is based on the existence of a solution to the variational
inequality as given in Corollary 4.3.12. The predicted delay function ∆̂i,e(θ, θ̄, f) plays an
essential role in formulating the variational inequality. Therefore, we first make sure that
the mapping f+ 7→ ∆̂i,e(· , · , f) is sequentially weak-strong continuous. On the way, we
prove the same sequential weak-strong continuity for predicted exit times of edges, paths
and for earliest arrival times.

Proposition 4.4.6. If q̂i is a p-continuous predictor, the mapping

Lp([0,M],R≥0)I×E → C([0,M] ×D,R≥0), f+ 7→ T̂i,e(· , · , f)

is sequentially weak-strong continuous for every e ∈ E, M > 0 and compact interval D.

Proof. Let (f+,k)k∈N be a sequence in Lp(D)I×E converging weakly to some f+. We use
the p-continuity of q̂i to conclude∥∥∥T̂i,e(· , · , fk) − T̂i,e(· , · , f)

∥∥∥
∞

= 1
νe

·
∥∥∥q̂i,e(· , · , fk) − q̂i,e(· , · , f)

∥∥∥
∞

−−−→
k→∞

0.

The sequential weak-strong continuity of the exit time of an edge constitutes the base
case for the sequential weak-strong continuity of the exit time of a finite path.

43

4 Dynamic Prediction Equilibria

Proposition 4.4.7. If q̂i is a p-continuous predictor, the mapping

Lp([0,M],R≥0)I×E → C([0,M] ×D,R≥0), f+ 7→ T̂i,P (· , · , f)

is sequentially weak-strong continuous for any finite path P , M > 0 and compact interval D.

Proof. We use a simple induction on the length of the path P . In the base case, P is
an empty path such that T̂i,P (· , · , f) = ((θ, θ̄) 7→ θ) for any deterministic flow f , and
f+ 7→ T̂i,P (· , · , f) is a constant (and thus continuous) map.

Now, assume that P consists of some path P ′ and an additional final edge e and let
(f+,k)k∈N be weakly converging to some f+. We want to show that∥∥∥T̂i,P (· , · , fk) − T̂i,P (· , · , f)

∥∥∥
∞

= sup
θ∈[0,M]

θ̄∈D

∣∣∣T̂i,e

(
T̂i,P ′(θ, θ̄, fk), θ̄, fk

)
− T̂i,e

(
T̂i,P ′(θ, θ̄, f), θ̄, f

)∣∣∣
converges to 0 for k → ∞. We split up this term using the triangle inequality to get

sup
θ∈[0,M]

θ̄∈D

∣∣∣T̂i,e

(
T̂i,P ′(θ, θ̄, fk), θ̄, fk

)
− T̂i,e

(
T̂i,P ′(θ, θ̄, f), θ̄, f

)∣∣∣

≤

=:αk︷ ︸︸ ︷
sup

θ∈[0,M]
θ̄∈D

∣∣∣T̂i,e

(
T̂i,P ′(θ, θ̄, fk), θ̄, fk

)
− T̂i,e

(
T̂i,P ′(θ, θ̄, fk), θ̄, f

)∣∣∣
+ sup

θ∈[0,M]
θ̄∈D

∣∣∣T̂i,e

(
T̂i,P ′(θ, θ̄, fk), θ̄, f

)
− T̂i,e

(
T̂i,P ′(θ, θ̄, f), θ̄, f

)∣∣∣
︸ ︷︷ ︸

=:βk

.

By the induction hypothesis, there exists an N ∈ N such that∥∥∥T̂i,P ′(· , · , fk) − T̂i,P ′(· , · , f)
∥∥∥
∞
< 1

holds for all k ≥ N . We define M ′ = maxθ∈[0,M],θ̄∈D T̂i,P ′(θ, θ̄, f) + 1. Then for all θ ∈
[0,M] and θ̄ ∈ D, the value T̂i,P ′(θ, θ̄, fk) is contained in [0,M ′] for all k ≥ N . Moreover,
1[0,M] · f+,k converges weakly to 1[0,M] · f+ in Lp([0,M ′])I×E . Using Proposition 4.4.6 we
conclude

αk ≤
∥∥∥T̂i,e(· , · , fk) − T̂i,e(· , · , f)

∥∥∥
C([0,M ′]×D)

−−−→
k→∞

0.

The term βk converges to 0 because of the uniform continuity of T̂i,e(· , · , f) on the compact
set [0,M ′] ×D.

Proposition 4.4.8. If q̂i is a p-continuous predictor, the mapping

Lp([0,M],R≥0)I×E → C([0,M] ×D,R≥0), f+ 7→ l̂i,v(· , · , f)

is sequentially weak-strong continuous for any node v ∈ Vi, M > 0 and compact interval D.

44

4.4 Existence of Dynamic Prediction Equilibria

Proof. Let (f+,k)k∈N weakly converge to f+ in Lp([0,M],R≥0)I×E . By Proposition 4.4.7,
the sequence (T̂i,P (· , · , fk))k uniformly converges to T̂i,P (· , · , f) on C([0,M]×D,R≥0) for
any simple v-ti-path P . The minimum of these functions then also converges uniformly.

Now, we are ready to establish the sequential weak-strong continuity for the predicted
delay function:

Proposition 4.4.9. If q̂i is a p-continuous predictor, the mapping

Lp([0,M],R≥0)I×E → C([0,M] ×D,R≥0), f+ 7→ ∆̂i,e(· , · , f)

is sequentially weak-strong continuous for any e ∈ Ei, M > 0 and compact interval D.

Proof. Let (f+,k)k∈N weakly converge to f+ in Lp([0,M],R≥0)I×E . For e = vw, we show∥∥∥∆̂i,e(· , · , fk) − ∆̂i,e(· , · , f)
∥∥∥
∞

−−−→
k→∞

0.

In a first step, we split up the sum again using the triangle inequality to obtain∥∥∥∆̂i,e(· , · , fk) − ∆̂i,e(· , · , f)
∥∥∥
∞

≤
∥∥∥l̂i,v(· , · , fk) − l̂i,v(· , · , f)

∥∥∥
∞

+ sup
θ∈[0,M]

θ̄∈D

∣∣∣l̂i,w (T̂i,e(θ, θ̄, fk), θ̄, fk
)

− l̂i,w
(
T̂i,e(θ, θ̄, f), θ̄, f

)
.
∣∣∣

The first term converges to 0 by Proposition 4.4.8. The second term is handled analogously
as in the proof of Proposition 4.4.7: We apply the triangle inequality once again to get

sup
θ∈[0,M]

θ̄∈D

∣∣∣l̂i,w (T̂i,e(θ, θ̄, fk), θ̄, fk
)

− l̂i,w
(
T̂i,e(θ, θ̄, f), θ̄, f

)∣∣∣

≤

=:αk︷ ︸︸ ︷
sup

θ∈[0,M]
θ̄∈D

∣∣∣l̂i,w (T̂i,e(θ, θ̄, fk), θ̄, fk
)

− l̂i,w
(
T̂i,e(θ, θ̄, fk), θ̄, f

)∣∣∣
+ sup

θ∈[0,M]
θ̄∈D

∣∣∣l̂i,w (T̂i,e(θ, θ̄, fk), θ̄, f
)

− l̂i,w
(
T̂i,e(θ, θ̄, f), θ̄, f

)∣∣∣
︸ ︷︷ ︸

=:βk

.

By Proposition 4.4.6 there exists an N ∈ N with ∥T̂i,e(· , · , fk) − T̂i,e(· , · , f)∥∞ < 1 for
all k ≥ N and define M ′ = maxθ∈[0,M],θ̄∈D T̂i,e(θ, θ̄, f) + 1. Then T̂i,e(θ, θ̄, fk) ∈ [0,M ′] for
any θ ∈ [0,M], θ̄ ∈ D for all k ≥ N . Using Proposition 4.4.8 we conclude

αk ≤
∥∥∥l̂i,w(· , · , fk) − l̂i,w(· , · , f)

∥∥∥
C([0,M ′]×D)

−−−→
k→∞

0.

The term βk converges to 0 because of the uniform continuity of l̂i,w(· , · , f) on the compact
set [0,M ′] ×D.

45

4 Dynamic Prediction Equilibria

Proof of Theorem 4.4.5. Let f be a partial dynamic prediction flow up to time H with
respect to q̂. Without loss of generality, we may assume that (f−i,e)i,e are the deterministic
outflow rates with respect to the inflow rates (f+

i,e)i,e as this does not change the outflow rates
up to time H as per Theorem 3.4.6. Lemma 3.4.8 states that the outflow rate on an edge e
of any dynamic flow h whose inflow rates coincide with f up to time H are already uniquely
determined up to time Te(H). Therefore, also the rates b−i,v(θ) :=

∑
e∈δ−v

h−i,e(θ) + 1v=siui(θ)
on the interval D := [H,H + α] are independent of the edge inflow rates h+

i,e|D on D.
We now want to apply Brézis’ theorem in the form of Corollary 4.3.12 to find suitable

inflow rates h+
i,e|D. For that, we define the set K ⊆ Lp(D) as follows:

K :=

g ∈ Lp(D,R≥0)I×E

∣∣∣∣∣∣
∀i ∈ I, v ∈ V \ {ti} :

∑
e∈δ+

v
gi,e

a.e.= b−i,v,

∀i ∈ I :
∑

e∈δ+
ti

gi,e

a.e.
≤ b−i,ti

 .
The elements of K are the possible inflow rates for the interval D. More specifically, for

any g ∈ K, let ḡ denote the unique deterministic flow with inflow rates

ḡ+
i,e(θ) :=

{
gi,e(θ), if θ ∈ D,
f+

i,e(θ), otherwise.

Claim 4.4.10. For each g ∈ K, ḡ is a feasible flow up to time H + α and (q̂, ḡ) is a DPE
up to time H.

Proof. The properties (F1), (F2) and (F3) are fulfilled for almost all θ ∈ R since ḡ is a
deterministic flow. For the feasibility of ḡ, it remains to show that flow is conserved for
almost all θ < H + α. By Lemma 3.4.8 the outflow rates of ḡ coincide with the outflow
rates of f for all edges e ∈ E on (−∞, Te(H)). Hence, for almost all θ < H property (F4)
is fulfilled due to the feasibility of f up to time H. For θ ∈ D the constraint is directly
implied by the first two conditions of g ∈ K.

Because all predictors are oblivious, the equilibrium property

ḡ+
i,e(θ) > 0 =⇒ e ∈ Êi(θ, θ, ḡ)

is transferred from f for almost all θ < H. ■

Claim 4.4.11. The set K is nonempty, closed, bounded and convex.

Proof. We note that b−i,v is p-integrable on D for all v ∈ V because of the assumption
ui ∈ Lp

loc(R,R≥0) and f−i,e(θ) ≤ νe for almost all θ. By the constraints of g ∈ K we have
∥gi,e∥Lp(D) ≤ ∥b−i,v∥Lp(D) for all i ∈ I and e = vw ∈ E. This implies

∥g∥Lp(D)I×E =
∑
i,e

∥gi,e∥Lp(D) =
∑
i,v

∑
e∈δ+

v

∥gi,e∥Lp(D)

=
∑
i,v

∥∥∥∥∥∥
∑

e∈δ+
v

gi,e

∥∥∥∥∥∥
Lp(D)

≤
∑
i,v

∥∥∥b−i,v∥∥∥Lp(D)
< ∞.

46

4.4 Existence of Dynamic Prediction Equilibria

Therefore, K is bounded in Lp(D)I×E . To understand that K is nonempty, we observe that,
in a partial dynamic prediction flow, particles of commodity i can only arrive at a node v
if ti is reachable from v. Hence, for all v ∈ V \ {ti} with b−i,v(θ) > 0 we simply select an
arbitrary edge e ∈ δ+

v and set gi,e = b−i,v. For all other edges, we set gi,e = 0. This implies
g ∈ K. The convexity of K can be verified easily. By checking that the constraints of K
also hold at limit points of converging sequences of K, we conclude that K is closed. ■

By Claim 4.4.10, ḡ is a dynamic prediction flow up to time H for every g ∈ K. Therefore,
we are looking for some g ∈ K such that

ḡ+
i,e(θ) > 0 =⇒ e ∈ Êi(θ, θ, ḡ)

is also fulfilled for almost all θ ∈ D. For an edge e = vw ∈ Ei lying on a directed si-ti-path,
the statement e ∈ Êi(θ, θ, ḡ) can be reformulated as ∆̂i,e(θ, θ, ḡ) ≤ 0. Using this observation,
we define our operator A : Lp(D)I×E → Lq(D)I×E with 1/p + 1/q = 1 as the predicted delay
operator when using an edge e = vw:

A(g)i,e(θ) :=
{

∆̂i,e(θ, θ, ḡ) if e ∈ Ei,
1 otherwise.

We note that for edges e /∈ Ei that are irrelevant to a commodity i, we simply set the
predicted delay to 1. However, any strictly positive constant would work here. By the
p-continuity of q̂, the function A(g)i,e is continuous as a function on R, too. Thus, A(g) is
indeed contained in Lq(D)I×E as a function on D.

Claim 4.4.12. The map A is non-negative and sequentially weak-strong continuous.

Proof. The non-negativity of A results from the FIFO-compatibility of the predictor.
To show that A is sequentially weak-strong continuous, let (gk)k∈N be a sequence in

Lp(D)I×E that converges weakly to g+. Then, ḡk,+|[0,M] also converges weakly to ḡ+|[0,M]
in Lp([0,M])I×D with M := H + α. By Proposition 4.4.9 and the obliviousness of the
predictors, the sequence ∆̂i,e(· , · , ḡk) converges to ∆̂i,e(· , · , ḡ) with respect to the uniform
norm on C([0,M]×D) for any e ∈ Ei. We use this information to compute the convergence
on the space C(D)I×E :∥∥∥A(gk) − A(g)

∥∥∥
∞

= max
i∈I

e∈Ei

sup
θ∈D

∣∣∣∆̂i,e(θ, θ, ḡk) − ∆̂i,e(θ, θ, ḡ)
∣∣∣

≤ max
i∈I

e∈Ei

∥∥∥∆̂i,e(· , · , ḡk) − ∆̂i,e(· , · , ḡ)
∥∥∥ −−−→

k→∞
0.

This also implies convergence on Lp(D)I×E : For arbitrary ε there exists N ∈ N with
∥A(gk) − A(g)∥∞ < ε/α for all k ≥ N . This implies∥∥∥Ai,e(gk) − Ai,e(g)

∥∥∥
Lq(D)

≤ α ·
∥∥∥Ai,e(gk) − Ai,e(g)

∥∥∥
∞
< ε.

■

47

4 Dynamic Prediction Equilibria

The variational inequality as given in Corollary 4.3.12 now states that there exists some
g ∈ K such that for all h ∈ K we have ⟨A(g), h− g⟩ ≥ 0.

We assume that the equilibrium property for ḡ does not hold almost everywhere on D,
implying that the following set has positive measure:

Φ :=
⋃
i,e

Φi,e :=
⋃
i,e

{
θ ∈ D

∣∣∣ ḡ+
i,e(θ) > 0 and A(g)i,e(θ) > 0

}
.

We now construct flow rates h ∈ K that lead to the contradiction ⟨A(g), h− g⟩ < 0. To do
this, we observe that by the continuity of the maps (θ, θ̄) 7→ l̂i,w(θ, θ̄, ḡ) and θ 7→ T̂i,e(θ, θ, ḡ),
the set of times at which an edge e is active, denoted by

Θi,e :=
{
θ ∈ R

∣∣∣ e ∈ Êi,e(θ, θ, ḡ)
}
,

is closed and thus measurable. We now define

hi,e : D → R, θ 7→

b−i,v(θ)

|δ+
v ∩Êi(θ,θ,ḡ)| , if θ ∈ Θi,e,

0, otherwise,

for all i ∈ I, e = vw ∈ E and θ ∈ D. This function is measurable, because the function
θ 7→

∣∣∣δ+
v ∩ Êi(θ, θ, ḡ)

∣∣∣ can be expressed as
∑

e∈δ+
v

1Θi,e . The boundedness of b−i,v(θ) implies
h ∈ L2(D)I×E . As the set δ+

v ∩ Êi(θ, θ, ḡ) is non-empty for any θ ∈ D and v ∈ Vi \ {t}, it
follows that

∑
e∈δ+

v

hi,e(θ) =
∑

e∈δ+
v ∩Êi(θ,θ,ḡ)

b−i,v(θ)∣∣∣δ+
v ∩ Êi(θ, θ, ḡ)

∣∣∣
{

= b−i,v(θ), if v ∈ V \ {t},
≤ b−i,v(θ), otherwise,

because b−i,v(θ) can only be positive for v ∈ Vi. Therefore, h is an element of K.
By definition, hi,e(θ) is only positive if e is active at time θ which already implies

A(g)i,e(θ) = 0. Therefore, we conclude

⟨A(g), h− g⟩ = ⟨A(g), h⟩ − ⟨A(g), g⟩ =
∑
i,e

∫
D

A(g)i,e · hi,e dλ− ⟨A(g), g⟩

= −
∑
i,e

∫
D

A(g)i,e · gi,e dλ.

There exist i ∈ I and e ∈ E such that Φi,e has positive measure. Because both gi,e and
A(g)i,e are positive on Φi,e, this implies

∫
Φi,e

A(g)i,e ·gi,e dλ > 0. The non-negativity of A(g)
and g now implies

⟨A(g), h− g⟩ ≤ −
∫

Φi,e

A(g)i,e · gi,e dλ < 0,

which contradicts that g is a solution to the variational inequality.

This theorem provides us with the possibility to extend any dynamic prediction flow by
some positive amount of time α. This is the key observation for the existence of dynamic
prediction equilibria:

48

4.5 Sufficient Conditions for p-Continuity of Predictors

Theorem 4.4.13. Let I be a finite set of commodities with network inflow rates u ∈ RI with
ui ∈ Lp

loc(R,R≥0), let q̂ = (q̂i)i∈I be a set of oblivious, p-continuous and FIFO-compatible
predictors with p > 1 and assume τe is strictly positive for all e ∈ E. Then there exists a
dynamic prediction flow with respect to q̂.

Proof. Let α := mine∈E τe > 0 and let f0 ∈ (R × R)I×E with f0,+
i,e , f0,−

i,e :≡ 0 for all i ∈ I,
e ∈ E. Then f0 is a dynamic prediction flow with respect to q̂ up to time 0. Recursively
define fn+1 as the dynamic prediction flow with respect to q̂ up to time α · (n + 1) given
through the extension of fn using Theorem 4.4.5. By the extension procedure, we have
fn
≤k·α

a.e.=
c.w.

fk
≤k·α whenever n ≥ k. We define the flow f∞ using

f∞,+
i,e (θ) := fn,+

i,e (θ) and f∞,−
i,e (θ) := fn,−

i,e (θ) with n = ⌈θ/α⌉

for all θ ≥ 0. Then f∞ is a dynamic prediction flow with respect to q̂ up to time ∞:
The feasibility and the equilibrium properties are checked for almost all θ ∈ R by using
f∞≤n·α

a.e.=
c.w.

fn
≤n·α, the fact that fn fulfills the desired properties for all n ∈ N, and the

obliviousness of the predictors.

4.5 Sufficient Conditions for p-Continuity of Predictors

This section introduces sufficient conditions for the p-continuity of predictors. More specif-
ically, we want to show that every predictor that depends continuously on the past queues,
edge loads and cumulative inflow functions is p-continuous. The exact notion of these types
of predictors is as follows:

Definition 4.5.1. A predictor q̂i depends continuously on the cumulative inflow, total cu-
mulative outflow functions and queue length functions, if there exist mappings

γi,e : R × R × C(R,R≥0)(I×E)+2·E → R≥0

for each e ∈ E with the following two properties:

(i) For all θ, θ̄ ∈ R and for all deterministic flows f ∈ (R × R)I×E , it holds that

q̂i,e(θ, θ̄, f) = γi,e

(
θ, θ̄, F+,f

I×E , F
−,f
E , qf

)
,

where F+,f
I×E := (F+,f

i,e)i∈I,e∈E and F+,f
E := (F+,f

e)e∈E denote the cumulative edge in-
and outflow functions with respect to f .

(ii) The map γi,e is continuous from the product topology, where all C(R,R≥0) are
equipped with the topology induced by the extended uniform norm, to the standard
topology of R.

The proof of the desired result involves the so-called Arzelà-Ascoli Theorem. We first
define the notions of uniform boundedness and equicontinuity of a set of functions, before
presenting the theorem.

49

4 Dynamic Prediction Equilibria

Definition 4.5.2. Let (X, d) be a compact metric space and let F be a set of continuous
functions on X, i.e. F ⊆ C(X).

The set F is uniformly bounded, if there is some M ∈ R with |f(x)| ≤ M for all f ∈ F
and x ∈ X.

The set F is equicontinuous at some point x ∈ X, if for each ε > 0 there exists a δ > 0
such that for all y ∈ X with d(x, y) < δ it follows |f(y) − f(x)| < ε for all f ∈ F . The set
F is equicontinuous on X, if it is equicontinuous at all points x ∈ X.

Theorem 4.5.3 (Arzelà-Ascoli Theorem [24, Section 10.1]). Let X be a compact metric
space and (fn)n∈N a uniformly bounded, equicontinuous sequence of functions fn ∈ C(X).
Then (fn)n has a subsequence that converges uniformly on X to a continuous function
f ∈ C(X).

Corollary 4.5.4. Let a, b ∈ R with a < b. If a set F ⊆ C([a, b]) of continuous functions on
[a, b] is uniformly bounded and all f ∈ F fulfill the Hölder condition of a fixed order α > 0
and a fixed constant K > 0, i.e.

∀f ∈ F, x, y ∈ [a, b] : |f(y) − f(x)| ≤ K · |y − x|α ,

then F is relatively compact in C([a, b]).

Proof. We apply the Arzelà-Ascoli Theorem to the compact metric space X = [a, b]. For
relative compactness in the normed vector space (C([a, b]), ∥ · ∥∞) it suffices to show that any
sequence in F has a convergent subsequence in (C([a, b]), ∥ · ∥∞), i.e. a uniformly convergent
subsequence. The equicontinuity of F now immediately follows from the Hölder condition
by choosing δ = (ε/K)1/α.

Next, we discuss several properties of operators T : X → Y where X and Y are Banach
spaces over R. We call T a linear operator, if it supports addition and multiplication with
a scalar, i.e. T (x+ y) = T (x) + T (y) and T (c · x) = c · T (x) holds for all x, y ∈ X, c ∈ R. A
linear operator T : X → Y is bounded, if it maps bounded subsets of X to bounded subsets
of Y ; T is called compact, if it maps bounded subsets B of X to relatively compact subsets
of Y , which means that T (B) ⊆ Y is compact in Y . This already implies that all compact
operators are bounded.

Corollary 4.5.5. For any a, b ∈ R with a < b and p > 1, the integration map

I : Lp([a, b]) → C([a, b]), f 7→
(
t 7→

∫ t

a
f dλ

)
is a compact linear operator.

Proof. The linearity of I is clear. It remains to show that I(F) is relatively compact in
C([a, b]) for a bounded subset F of Lp([a, b]). For that, it suffices to show that Corollary 4.5.4
can be applied to I(F). In fact, for any I(f) ∈ I(F) and any x, y ∈ [a, b] with x < y, the
Hölder inequality yields

|I(f)(y) − I(f)(x)| =
∣∣∣∣∫ y

x
f dλ

∣∣∣∣ =
∥∥∥f · 1(x,y)

∥∥∥
L1

≤ ∥f∥Lp ·
∥∥∥1(x,y)

∥∥∥
Lq

= ∥f∥Lp · |y − x|1/q ,

50

4.5 Sufficient Conditions for p-Continuity of Predictors

where q is the Hölder conjugate of p fulfilling 1/p + 1/q = 1. As F is bounded, ∥f∥Lp can be
estimated independently of f , which shows that F fulfills the required Hölder condition of
fixed power α = 1/q and a fixed constant K = supf∈F ∥f∥Lp .

Moreover, I(F) is uniformly bounded by K · (b− a)1/q as for any t ∈ [a, b] and f ∈ F the
Hölder inequality implies

I(f)(t) ≤
∫ b

a
|f | dλ =

∥∥∥f · 1[a,b]
∥∥∥

L1
≤ ∥f∥Lp ·

∥∥∥1[a,b]
∥∥∥

Lq
≤ K · (b− a)1/q.

Remark 4.5.6. The statement of Corollary 4.5.5 does not hold for p = 1. In fact, for [a, b] =
[0, 1], the sequence fn = n ·1[0,1/n] is bounded by ∥fn∥L1 = 1. However, Fn(x) :=

∫ x
0 fn dλ =

nx · max{x, 1/n} converges pointwise to F (0) := 0 and F (x) = 1 for x > 0. Therefore, no
subsequence of (Fn)n∈N converges uniformly in C([0, 1]), so that the integration operator is
not compact from L1([0, 1]) to C([0, 1]).

Proposition 4.5.7. Every compact linear operator T : Lp([a, b]) → C([a, b]) is sequentially
weak-strong continuous for any p > 1.

Proof. This statement is a standard result in the study of compact operators and is shown
e.g. in [2, Lemma 8.2].

Corollary 4.5.8. The mappings f+
i,e 7→ F+

i,e and f+
e 7→ F+

e are sequentially weak-strong
continuous from Lp([0,M]) to C([0,M]) for any M > 0 and p > 1.

The following property of Vickrey’s fluid queuing system has been shown by Cominetti
et al. in [7, Lemma 4]. The authors used this property to prove the existence of dynamic
Nash equilibrium flows (c.f. Section 4.7.1).

Proposition 4.5.9. The mapping f+
e 7→ qf

e is sequentially weak-strong continuous from
Lp([0,M]) to C([0,M]) for any M > 0 and p > 1.

Proof. We use the representation of the queue length function given in Corollary 3.4.2 as

qf
e (θ) := max

ξ≤θ

∫ θ

ξ
f+

i,e − νe dλ.

Now, for any weakly converging sequence f+,k
e in Lp([0,M]) we use the equality

qf
e (θ) =

∫ θ

0
f+

e − νe dλ− min
ξ≤θ

∫ ξ

0
f+

e − νe dλ = F+
e (θ) − θ · νe − min

ξ≤θ

∫ ξ

0
f+

e − νe dλ

to compute

∥∥∥qfk

e − qf
e

∥∥∥
∞

= sup
θ∈[0,M]

∣∣∣∣∣max
ξ≤θ

∫ θ

ξ
f+,k

e − νe dλ− max
ξ≤θ

∫ θ

ξ
f+

e − νe dλ
∣∣∣∣∣

≤
∥∥∥F+,k

e − F+
e

∥∥∥
∞

+ sup
θ∈[0,M]

∣∣∣∣∣min
ξ≤θ

∫ ξ

0
f+,k

e − νe dλ− min
ξ≤θ

∫ ξ

0
f+

e − νe dλ
∣∣∣∣∣ .

51

4 Dynamic Prediction Equilibria

The first term converges by Corollary 4.5.8 to 0. Moreover, γk : ξ 7→
∫ ξ

0 f
+,k
e − νe dλ

converges strongly to γ : ξ 7→
∫ ξ

0 f
+
e − νe dλ in C([0,M]).

For θ ∈ R we denote the minimizers as ξk,θ ∈ arg minξ≤θ γ
k(ξ) and ξθ ∈ arg minξ≤θ γ(ξ).

Then we compute∣∣∣∣min
ξ≤θ

γk(ξ) − min
ξ≤θ

γ(ξ)
∣∣∣∣ =

∣∣∣γk(ξk,θ) − γ(ξθ)
∣∣∣

≤
∣∣∣γk(ξk,θ) − γ(ξk,θ)

∣∣∣+ |γ(ξk,θ) − γ(ξθ)|

≤
∥∥∥γk − γ

∥∥∥
∞

+ γ(ξk,θ) − γ(ξθ)

≤ 3 ·
∥∥∥γk − γ

∥∥∥
∞

+ γk(ξk,θ) − γk(ξθ) ≤ 3 ·
∥∥∥γk − γ

∥∥∥
∞
,

which goes to 0 as k approaches ∞. The observation

sup
θ∈[0,M]

∣∣∣∣∣min
ξ≤θ

∫ ξ

0
f+,k

e − νe dλ− min
ξ≤θ

∫ ξ

0
f+

e − νe dλ
∣∣∣∣∣ =

∥∥∥γk − γ
∥∥∥
∞

concludes the proof of the statement.

Proposition 4.5.10. The mapping f+
e 7→ F−e is sequentially weak-strong continuous from

Lp([0,M]) to C([0,M]) for any M > 0 and p > 1.

Proof. We use the following representation of the total cumulative outflow in terms of the
total cumulative inflow and the queue length:

F−e (θ) = F+
e (θ − τe) − qe(θ − τe).

Now, the sequential weak-strong continuity is due to Corollary 4.5.8 and Proposition 4.5.9
together with the fact that F−e vanishes on [0, τe].

Lemma 4.5.11. A predictor q̂i,e that depends continuously on the cumulative inflow, total
cumulative outflow and queue length functions is a p-continuous predictor for any p > 1.

Proof. By the continuity of γi,e it is trivial to conclude that q̂i,e(· , · , f) ∈ C(R2,R≥0) holds
for all e ∈ E and deterministic flows f . It remains to show that the map f+ 7→ q̂i,e(· , · , f)
is sequentially weak-strong continuous from Lp([0,M],R≥0)I×E to C([0,M] × D,R≥0) for
every M > 0 and compact interval D.

Let (f+,k)k∈N be a sequence converging weakly to f+ in Lp([0,M])I×E . Then, the se-
quence (f+,k

e)k∈N converges weakly to f+
e and (f+,k

i,e)k∈N converges weakly to f+
i,e for every

e ∈ E and i ∈ I. By Corollary 4.5.8, Proposition 4.5.10 and Proposition 4.5.9, the sequences
(F+,k

i,e)k∈N, (F−,k
e)k∈N and (qk

e)k∈N converge strongly to F+
i,e, F−e and qe, respectively, in

C([0,M]) for all e ∈ E and i ∈ I. This implies that these sequences also converge in
C(R,R≥0) with respect to the extended uniform norm.

We write gk := (F+,k
I×E , F

−,k
E , qk

E) for all k ∈ N and g := (F+
I×E , F

−
E , qE) and conclude that

gk converges to g in G := C(R,R≥0)(I×E)+2·E with respect to the extended uniform norm.

52

4.6 Applied Predictors

We want to show that∥∥∥q̂i,e(· , · , fk) − q̂i,e(· , · , f)
∥∥∥

C([0,M]×D)
=
∥∥∥γi,e(· , · , gk) − γi,e(· , · , g)

∥∥∥
C([0,M]×D)

vanishes as k approaches ∞.
Let ε > 0 be arbitrary. Because γi,e is continuous, for any pair (θ, θ̄) ∈ [0,M] ×D there

exists some δ(θ,θ̄) > 0 such that whenever ∥(θ, θ̄, g) − (θ′, θ̄′, g′)∥∞ < δ(θ,θ̄) for some g′ ∈ G it
holds that ∣∣∣γi,e(θ, θ̄, g) − γi,e(θ′, θ̄′, g′)

∣∣∣ < ε

2 .

The compact set [0,M] ×D is covered by

C :=
{
Bδ(θ,θ̄)

(θ, θ̄)
∣∣∣ θ ∈ [0,M], θ̄ ∈ D

}
where Br(x) := {y ∈ [0,M] ×D | ∥y − x∥∞ < r} denotes the open ball in [0,M]×D around
x with radius r. By the compactness of [0,M] ×D there is a subcover using finitely many
of these open balls. Let δ be the minimum radius of these finitely many balls. Then we get
some N ∈ N with ∥gk − g∥∞ < δ for all k ≥ N . For arbitrary θ ∈ [0,M], θ̄ ∈ D and k ≥ N
we infer ∣∣∣γi,e(θ, θ̄, gk) − γi,e(θ, θ̄, g)

∣∣∣ < ε

2 ,

which implies the desired approximation ∥γi,e(· , · , gk) − γi,e(· , · , g)∥C([0,M]×D) < ε.

4.6 Applied Predictors

In this section we introduce several types of predictors. We start with quite unsophisticated
predictors and improve them gradually.

Definition 4.6.1. The Zero-Predictor q̂Z
i predicts that no queues occur, i.e.

q̂Z
i,e(θ, θ̄, f) := 0

for all e ∈ E, θ, θ̄ ∈ R and dynamic flows f .

If a commodity i ∈ I uses the Zero-Predictor, the induced edge costs are constant with
ĉZ

i,e(· , · , ·) ≡ τe for all e ∈ E. Moreover, predicted shortest paths will always remain the
same no matter when the prediction will be taken. One can imagine that agents of that
commodity only use a physical map with recorded static edge costs as the information their
routing decision is based upon.

Definition 4.6.2. The constant predictor q̂C
i predicts that the queue lengths remain con-

stant from the time of the prediction onwards, i.e.

q̂C
i,e(θ, θ̄, f) := qf

e (θ̄)

for all e ∈ E, θ, θ̄ ∈ R and dynamic flows f .

53

4 Dynamic Prediction Equilibria

Agents using the constant predictor take a snapshot of the queue lengths of all edges
at time θ̄ and assume this current situation for the future. Here, the dynamic edge costs
are constant in the argument θ with ĉC

i,e(· , θ̄, f) ≡ τe + qf
e (θ̄)/νe for all edges e ∈ E. As

depicted in Section 4.7.2, this predictor is deeply connected with so-called instantaneous
dynamic equilibria (IDE) as introduced in [14, Definition 2.1].

Proposition 4.6.3. The Zero-Predictor and the constant predictor are oblivious, FIFO-
compatible and p-continuous for any p > 1.

Proof. For the Zero-Predictor the statement is trivially fulfilled.
The constant predictor is oblivious, as the queue at time θ̄ only depends on the total

inflow rate up to time θ̄ as stated in Lemma 3.4.8. The FIFO-compatibility is again fulfilled
trivially. The p-continuity results from the predictor’s continuous dependence on the queue
length: For any sequence of real values (θ̄k)k∈N converging to some θ̄ and for every sequence
of queue length functions qk

e converging in C(R,R≥0) with respect to the extended uniform
norm to some qe, it holds∣∣∣qk

e (θ̄k) − qe(θ̄)
∣∣∣ ≤

∣∣∣qk
e (θ̄k) − qe(θ̄k)

∣∣∣+ ∣∣∣qe(θ̄k) − qe(θ̄)
∣∣∣ −−−→

k→∞
0.

The linear predictor q̂L
i,e as given in Definition 4.2.1 for which an example dynamic pre-

diction flow is depicted in Section 4.2, is a bit more involved. It is defined as

q̂L
e (θ, θ̄, f) :=

(
qf

e (θ̄) + ∂−q
f
e (θ̄) · min{θ − θ̄, H}

)+
,

where (x)+ := max{x, 0} denote the positive part of a real value x, and H ∈ R>0 ∪ {∞}
is some prediction horizon. However, as we have seen in Section 4.2 the predictions are
not continuous in the argument θ̄ whenever the gradient ∂−qf

e jumps. Therefore, q̂L
i,e is not

p-continuous and hence does not qualify for Theorem 4.4.13, although it is oblivious and
FIFO-compatible. However, it remains an open question whether there exists an example
network in which there is no dynamic prediction flow with respect to the linear predictor.

A simple regularization technique can be applied to the linear predictor in order to make
it p-continuous:

Definition 4.6.4. The regularized linear predictor with a window size δ > 0 and a prediction
horizon H ∈ R>0 ∪ {∞} is defined as

q̂RL
i,e (θ, θ̄, f) :=

(
qf

e (θ̄) + qf
e (θ̄) − qf

e (θ̄ − δ)
δ

· min{θ − θ̄, H}
)+

.

The regularized linear predictor is obtained from the linear predictor by taking the rolling
average of the gradient of the queue length in a rolling window with δ time units into the
past. This leads to the left-sided difference quotient of qf

e .

Proposition 4.6.5. The regularized linear predictor is oblivious, FIFO-compatible and p-
continuous for any p > 1.

54

4.6 Applied Predictors

Proof. It is clear, that q̂RL is oblivious. The fact that the dynamic cost ce follows the FIFO
order implies that the regularized linear predictor is FIFO-compatible. It remains to show
that q̂RL depends continuously on the queue length function. In the proof for the constant
predictor, we have seen that the map (θ̄, q) 7→ q(θ̄) is continuous from R × C(R,R≥0)
to R. The same holds true for the map (θ̄, q) 7→ q(θ̄ − δ) for any δ > 0. Moreover,
(θ, θ̄) 7→ min{θ−θ̄, H} is continuous. Then, q̂RL depends continuously on the queue function,
as the corresponding map is simply the sum and product of continuous functions.

Taking a closer look at the regularized linear predictor, we notice that it is just the linear
interpolation of two past samples of the queue length function (given H is finite). Now,
we enhance this method by allowing the predictor to take a multitude of past samples and
predict multiple samples of the future evolution of the queue length. This way we establish
a machine-learning based predictor that learns the linear coefficients connecting past queue
lengths with the predicted future queue length samples.

More specifically, for an edge e = vw ∈ E the new predictor uses kp samples of the past
queue lengths at times θ̄ − δ · (i − 1) for i ∈ [kp] to predict kf samples of the future queue
at times θ̄ + δ · j for j ∈ [kf]. Moreover, the predictor does not only use the past samples
of the concerned edge, but also of neighboring edges. Here, the set of neighboring edges is
given by N(e) = δ−v ∪ {e} ∪ δ+

w . This allows the predictor to be aware of flow that occurs in
the neighborhood of an edge.

For each edge e, the predictor learns coefficient matrices W e′,e ∈ Rkp×kf for e′ ∈ N(e) as
well as biases β ∈ Rkf to compute interpolation points

q̂ML,raw
e

(
θ̄ + j · δ, θ̄, f

)
:=

 ∑
e′∈N(e)

∑
i∈[kp]

we′,e
i,j · qf

e′

(
θ̄ − (i− 1) · δ

)
+ βj

+

for j ∈ [kf]. The idea is to linearly interpolate these points which would result in a p-
continuous predictor for p > 1, as it depends continuously on the queue length functions.
However, this raw machine-learned predictor is not guaranteed to be FIFO-compatible.
To achieve this, we apply some post-processing: We derive the new interpolation points
q̂ML

e (θ̄, θ̄, f) = qf
e (θ̄) and

q̂ML
e

(
θ̄ + j · δ, θ̄, f

)
:= max

 q̂ML,raw
e

(
θ̄ + j · δ, θ̄, f

)
,

q̂ML
e

(
θ̄ + (j − 1) · δ, θ̄, f

)
− νe · δ

for all j ∈ [kf] and linearly interpolate these points.

Definition 4.6.6. The predictor q̂ML
i,e is called the linear regression predictor.

After applying the post-processing the resulting predictor still depends continuously on
the queue length functions which implies the following proposition.

Proposition 4.6.7. The linear regression predictor is oblivious, FIFO-compatible and p-
continuous for any p > 1.

More technical details of the learning procedure used for the linear regression predictor
are described in Section 5.4.2.

55

4 Dynamic Prediction Equilibria

As the last predictor in this section, we introduce the so-called perfect predictor.
Definition 4.6.8. The perfect predictor q̂P

i,e predicts the future queue length correctly with

q̂P
i,e(θ, θ̄, f) := qf

e (θ).

It is clear from the definition, that this predictor is FIFO-compatible and depends contin-
uously on the queue length function qf

e . It is therefore p-continuous for any p > 1. However,
it is also clear that it is a non-oblivious predictor, and as such it does not fulfill the con-
straints of Theorem 4.4.13. Nevertheless, the flow in a dynamic prediction equilibrium, in
which all commodities use the perfect predictor, is the same as a dynamic Nash equilibrium
flow (as analyzed in Section 4.7.1). In this scenario, particles can predict the future evo-
lution of the traffic exactly. Hence, they can choose a perfect shortest path already when
starting at the source node.

4.7 Comparison with Existing Forms of Equilibria
Multiple models of equilibrium involving Vickrey’s fluid queuing model have been studied in
the past. In this section we compare two popular models with dynamic prediction equilibria.
As they use the same physical model as introduced in Chapter 3, they differ only in the
behavioral model. More specifically, the difference between the models is that the agents
base their routing decisions on different levels of detail in the information given to them.

4.7.1 Dynamic Nash Equilibrium Flows
In a so-called dynamic (Nash) equilibrium all agents have full information about the future
traffic. Using this information, agents in such a dynamic flow can choose a perfect path
when starting at their source, because they know the correct future evolution of all queues.
This means that they choose an si-ti-path which will turn out to be a perfect choice also in
hindsight. In the following, we give a brief formal definition of such an equilibrium based
on the definition by Cominetti et al. in [7]. It is weaker than a similar definition given by
Koch and Skutella in [17].

Given a feasible dynamic flow f , we use the notation of Chapter 2 with respect to the
dynamic cost function ce(θ) := τe + qe(θ)/νe. This means that the exit time of a finite
path P = (e1, . . . , ek) when entering at time θ is given by the concatenation of the exit
times of its edges as TP (θ) := (Tek

◦ · · · ◦ Te1) (θ). For two nodes v, w ∈ V , we denote the
earliest arrival at w when starting at node v at time θ as lv,t(θ) := minP∈Pv,w TP (θ). For a
commodity i ∈ I, we call an edge e ∈ Ei, that lies on a directed si-ti-path, active at time θ
if Te(lsi,v(θ)) = lsi,w(θ) holds true. The set of active times of an edge e ∈ E is collected in
the set Θi,e.
Definition 4.7.1. A feasible flow f is called a dynamic (Nash) equilibrium (DE) flow, if
for every e = vw ∈ E, i ∈ I and for almost all θ ∈ R the following implication holds:

f+
i,e(θ) > 0 =⇒ θ ∈ lsi,v(Θi,e).

As explained previously, in dynamic Nash equilibrium flows, agents choose perfect paths.
In our framework this would mean that the predictors of all agents are perfect. Therefore,

56

4.7 Comparison with Existing Forms of Equilibria

we want to show equivalence between the two concepts. This is achieved with the following
theorem.

Theorem 4.7.2. Let I be a finite set of commodities and f a feasible dynamic flow in a
network in which any cycle has a strictly positive transit time. Then f is a dynamic Nash
equilibrium flow if and only if (q̂P, f) is a dynamic prediction equilibrium.

On the way of proving this statement, we will find a novel characterization of dynamic
Nash equilibrium flows. We start by inspecting the perfect predictor more closely:

Proposition 4.7.3. Let I be a finite set of commodities and f a feasible dynamic flow. The
pair (q̂P, f) is a DPE if and only if for all commodities i ∈ I, e ∈ E and almost all θ ∈ R
it holds that

f+
i,e(θ) > 0 =⇒ e ∈ Ei ∧ lw,ti(Te(θ)) = lv,ti(θ).

Proof. As the perfect predictor always predicts the queue correctly, i.e. q̂P
i,e(θ, θ̄, f) = qe(θ),

the predicted exit time of edges e and paths P coincide with Te and TP . Thus, for e ∈ Ei,
lw,ti(Te(θ)) = lv,ti(θ) is equivalent to e ∈ Êi(θ, θ, f).

Comparing the above representation of a dynamic prediction flow with respect to the
perfect predictor with the definition of dynamic Nash equilibrium flows, the most prominent
difference is the perspective of when edges are thought of as active. In dynamic Nash
equilibrium flows, an active edge e = vw lies on a shortest si-w-path, whereas following the
DPE notion a (predicted) active edge lies on a shortest v-ti-path.

To realize that these two notions of equilibria are indeed equivalent, we need a series of
intermediate results. For a feasible flow f and an edge e = vw reachable from si we define
the cumulative in- and outflow up to the earliest arrival time when starting at time θ in si as
x+

i,e(θ) := F+
i,e(lsi,v(θ)) and x−i,e(θ) := F−i,e(lsi,w(θ)). Moreover, we introduce the cumulative

balance functions Bi,v(θ) :=
∑

e∈δ+
v
F−i,e(θ)−

∑
e∈δ−v

F+
i,e(θ) for all v ∈ V and i ∈ I. The value

bi,v(θ) := Bi,v(lsi,v(θ)) denotes the cumulative balance at the earliest arrival when starting
at time θ in si for all nodes v ∈ V that are reachable from si. In [19, Theorem 3.1.11] the
following theorem based on techniques introduced in [17] was shown:

Theorem 4.7.4. Given a feasible flow f in a network in which any cycle has positive transit
time, the following statements are equivalent:

(i) The flow f is a dynamic Nash equilibrium flow.

(ii) For all i ∈ I and e ∈ E reachable from si it holds x+
i,e = x−i,e.

(iii) For all i ∈ I it holds bi,si = −bi,ti.

Before we show the equivalence, we will prove a similar characterization of dynamic
prediction flows that use the perfect predictor. Analogously to the above theorem, we
define x̂+

i,e(θ) := F+
i,e(l←v,ti

(θ)) and x̂−i,e(θ) := F−i,e(l←w,ti
(θ)) as the cumulative in- and outflow

up to the latest departure time for arriving at time θ at the sink ti for all e ∈ Ei (utilizing
the notation described in Section 2.3). Correspondingly, b̂i,v(θ) := Bi,v(l←v,ti

(θ)) describes
the cumulative balance of node v at the latest departure time to arrive at ti at time θ for
all v ∈ Vi.

57

4 Dynamic Prediction Equilibria

Theorem 4.7.5. Given a feasible flow f in a network in which any cycle has positive transit
time, the following statements are equivalent:

(i) The pair (q̂P, f) is a dynamic prediction equilibrium.

(ii) For all commodities i ∈ I, e ∈ E and almost all θ ∈ R it holds that

f+
i,e(θ) > 0 =⇒ e ∈ Ei ∧ lw,ti(Te(θ)) = lv,ti(θ).

(iii) For all i ∈ I it holds x̂+
i,e = x̂−i,e for e ∈ Ei, and f+

i,e

a.e.≡ 0 for e /∈ Ei.

(iv) For all i ∈ I it holds b̂i,si = −b̂i,ti.

Before we prove the above theorem, we begin with a simple observation on the connection
between x̂+

i,e and x̂−i,e.

Proposition 4.7.6. For a feasible flow f , x̂+
i,e(θ) ≥ x̂−i,e(θ) holds true for all i ∈ I, e ∈ Ei,

and θ ∈ R.

Proof. For any edge e = vw ∈ Ei and θ ∈ R we have T←e (l←w,ti
(θ)) ≤ l←v,ti

(θ). Using
Proposition 3.3.3 it follows

x̂−i,e(θ) = F−i,e(l←w,ti
(θ)) = F+

i,e(T←e (l←w,ti
(θ))) ≤ F+

i,e(l←v,ti
(θ)) = x̂+

i,e(θ).

Proof of Theorem 4.7.5. The equivalence of (i) and (ii) is due to Proposition 4.7.3.
Next, we show (ii) ⇔ (iii). Let f be a feasible flow and let

Θ̂i,e := {θ ∈ R | e ∈ Ei ∧ lw,ti(Te(θ)) = lv,ti(θ)}

denote the set of times an edge is active for commodity i as predicted by the perfect
predictor. For an edge e = vw ∈ Ei we define

ωi,e(θ) := max {ω ≤ θ | lw,ti(Te(ω)) = lv,ti(θ)} .

Claim 4.7.7. The complement of Θ̂i,e is denoted by Θ̂c
i,e. Then, for all e ∈ Ei it holds that

Θ̂c
i,e =

⋃
θ∈R

(ωi,e(θ), θ).

Proof. Assume θ ∈ Θ̂c
i,e, or equivalently lw,ti(Te(θ)) > lv,ti(θ). By the continuity of lw,ti , Te

and lv,ti , there exists some ε > 0 such that lw,ti(Te(θ′)) > lv,ti(θ+ε) holds for all θ′ ∈ [θ, θ+ε].
This implies ωi,e(θ + ε) < θ and thus θ ∈ (ωi,e(θ + ε), θ + ε).

On the other hand, let θ be contained in an interval (ωi,e(ξ), ξ) for some ξ ∈ R. Then
lw,ti(Te(θ)) > lv,ti(ξ) ≥ lv,ti(θ) holds by definition of ωi,e and the monotonicity of lv,ti

implying θ ∈ Θ̂c
i,e. ■

Cominetti et al. showed in [7, Lemma 8] that given a possibly uncountable family
{(aj , bj)}j∈J of intervals, a function g ∈ L1

loc(R,R≥0) vanishes on (aj , bj) for every j ∈ J

58

4.7 Comparison with Existing Forms of Equilibria

if and only if it vanishes on the union
⋃

j∈J(aj , bj) (c.f. [19, Lemma 3.1.7]). Applying this
statement together with the observation above proves the following claim.

Claim 4.7.8. The pair (q̂P, f) is a DPE if and only if f+
i,e vanishes on all intervals

(ωi,e(θ), θ) for e ∈ Ei and on all of R for edges e /∈ Ei.

For any e ∈ Ei and θ ∈ R it holds that

lw,ti

(
Te(ωi,e(l←v,ti

(θ)))
)

= lv,ti(l←v,ti
(θ)) = θ.

Therefore, we can infer l←w,ti
(θ) ≥ Te(ωi,e(l←v,ti

(θ))) which implies

F+
i,e(ωi,e(l←v,t(θ)) = F−i,e

(
Te(ωi,e(l←v,ti

(θ)))
)

≤ F−i,e(l←w,ti
(θ)) = x̂−e (θ).

If (q̂P, f) is a dynamic prediction equilibrium, Fi,e(l←v,ti
(θ)) = F+

i,e(ωi,e(l←v,ti
(θ))) holds because

f−i,e vanishes on (ωi,e(l←v,ti
(θ)), l←v,ti

(θ)). Thus, it holds that x̂+
i,e(θ) ≤ x̂−i,e(θ) which combined

with Proposition 4.7.6 shows (iii).
Assume (iii) is fulfilled and let θ ∈ R with ωi,e(θ) < θ. Then, by the definition of ωi,e, it

follows ωi,e(θ) = T←e (l←w,ti
(lv,ti(θ))). Using this observation we deduce

F+
i,e(ωi,e(θ)) = F−i,e(l←w,ti

(lv,ti)) = x̂−i,e(lv,ti(θ))
= x̂+

i,e(lv,ti(θ)) = F+
i,e(l←v,ti

(lv,ti(θ)) ≥ F+
i,e(θ),

where the last inequality stems from l←v,ti
(lv,ti(θ)) ≥ θ. As ωi,e(θ) is smaller than θ, this

shows that f+
i,e vanishes on (ωi,e(θ), θ).

Lastly, we prove the equivalence (iii) ⇔ (iv). We observe that for any v ∈ Vi \ {si, ti} the
flow conservation property (F4) implies b̂i,v ≡ 0. Moreover, b̂i,v has the representation

b̂i,v(θ) =
∑

e∈δ−v

x̂−i,e(θ) −
∑

e∈δ+
v ∩Ei

x̂+
i,e(θ) −

∑
e∈δ+

v \Ei

F+
i,e(l←v,ti

(θ).

Taking the sum over all v ∈ Vi yields

b̂i,si(θ) + b̂i,ti(θ) =
∑

e∈Ei

(
x̂+

i,e(θ) − x̂−i,e(θ)
)

+
∑

v∈Vi,e∈δ+
vi
\Ei

F+
i,e(l←v,ti

(θ)).

From this equation, the implication (iii) ⇒ (iv) follows trivially. For (iv) ⇒ (iii), assume
the expression above equals 0. As all summands are non-negative by Proposition 4.7.6, each
summand must vanish. This implies x̂+

i,e = x̂−i,e for all e ∈ Ei and f+
i,e ≡ 0 for all e ∈ δ+(Vi).

By Proposition 3.3.5 this also implies f+
i,e ≡ 0 for all e /∈ Ei.

Now that we have a characterization on both dynamic Nash equilibrium flows and dynamic
prediction flows with respect to the perfect predictor, the idea is to prove equivalence of
the two notions using the source’s and sink’s balance values. The next proposition is the
final tool that allows us to compare the corresponding balance values b̂i,vi and bi,vi in a
meaningful way.

59

4 Dynamic Prediction Equilibria

Proposition 4.7.9. Let (q̂P, f) be a DPE in a network in which any cycle has positive
transit time, and let i ∈ I and v ∈ Vi. If the function lv,ti is constant on an interval [a, b]
for some a < b, then f+

i,e|[a,b] ≡ 0 holds for all outgoing edges e ∈ δ+
v .

Proof. For v = ti the statement follows from the fact that lti,ti is never constant on a non-
degenerate interval. For v ̸= ti we assume the contrary: Let lv1,ti be constant with value
L on an interval [θ0, θ∗] with θ0 < θ∗ and assume there is an edge e1 = v1v2 ∈ δ+

v1 with
F+

i,e1
(θ0) < F+

i,e1
(θ∗). We define θ1 := max{θ ≤ θ∗ | lv2,ti(Te1(θ)) = L}. Because of the DPE

property, f+
i,e1

vanishes on (θ1, θ∗) and hence F+
i,e1

(θ0) < F+
i,e1

(θ∗) = F+
i,e1

(θ1). This implies
Te1(θ0) < Te1(θ1). Moreover, lv2,ti is constant on [Te1(θ0), Te1(θ1)] with value L.

We now construct an infinite sequence of edges ej = vjvj+1, times θj and paths Pj =
(e1, . . . , ej) such that the following properties hold for all j ∈ N:

(i) F+
i,ej

(TPj−1(θ0)) < F+
i,ej

(TPj−1(θj)),

(ii) lvj+1,ti is constant on [TPj (θ0), TPj (θj)] with value L,

(iii) TPj (θ0) < TPj (θj),

(iv) vj+1 ∈ Ei \ {ti}.

For j = 1 the above construction already fulfills the required properties. Assume, we have
constructed the sequence up to j ∈ N. By flow conservation and properties (i) and (iv),
there exists an edge ej+1 = vj+1vj+2 ∈ δ+

vj+1 with F+
i,ej+1

(TPj (θ0)) < F+
i,ej+1

(TPj (θj)). We
define θj+1 := max{θ ≤ θj | lvj+2,ti(TPj+1(θ)) = L}. By property (ii), f+

i,ej+1
vanishes on

(TPj (θj+1), TPj (θj)) which implies

F+
i,ej+1

(TPj (θ0)) < F+
i,ej+1

(TPj (θj)) = F+
i,ej+1

(TPj (θj+1)).

Moreover, lvj+2,ti is constant on [TPj+1(θ0), TPj+1(θj+1)] with value L. Because f+
i,ej+1

does
not vanish almost everywhere on [TPj (θ0), TPj (θj+1)], we conclude TPj+1(θ0) < TPj+1(θj+1).
Finally, this implies vj+2 ̸= ti.

Such an infinite sequence cannot exist: Because the transit time of any cycle is positive,
the value TPj(θ0) gets arbitrarily large for k → ∞. For TPj(θ0) > L, the inequality

L = lvj+1,ti(TPj (θ0)) ≥ TPj (θ0) > L

yields a contradiction.

Proof of Theorem 4.7.2. By Theorems 4.7.4 and 4.7.5 it suffices to prove the equivalence

bi,si = −bi,ti ⇐⇒ b̂i,si = −b̂i,ti

for all commodities i ∈ I. Let us first assume bi,si(θ) = −bi,ti(θ) holds for all θ ∈ R. Then
for all θ ∈ R, we compute

b̂i,si(θ) = Bi,si(l←si,ti
(θ)) = bi,si(l←si,ti

(θ)) = −bi,ti(l←si,ti
(θ))

= −Bi,ti

(
lsi,ti(l←si,ti

(θ))
)

= −Bi,ti(θ) = −b̂i,ti(θ).

60

4.7 Comparison with Existing Forms of Equilibria

For the other direction, pretend that b̂i,si = −b̂i,ti is fulfilled. For θ ∈ R we have

−bi,ti(θ) = −Bi,ti(lsi,ti(θ)) = −b̂i,ti(lsi,ti(θ)) = b̂i,si(lsi,ti(θ)) = Bi,si

(
l←si,ti

(lsi,ti(θ))
)
.

We aim to show that this expression equals

bi,si(θ) = Bi,si(lsi,si(θ)) = Bi,si(θ).

Let θ′ := l←si,ti
(lsi,ti(θ)) ≥ θ. The function lsi,ti is constant on [θ, θ′] and thus Proposition 4.7.9

states that f+
i,e vanishes on [θ, θ′] for all e ∈ δ+

si
. Therefore,

∑
e∈δ+

si
F+

e is constant on [θ, θ′].
The flow conservation property states that

∑
e∈δ−si

F−e must remain constant on [θ, θ′], which
implies that Bi,si is constant on [θ, θ′], concluding our proof.

We summarize our results in the following theorem.

Theorem 4.7.10. Given a feasible flow f in a network, in which any cycle has positive
transit time, the following statements are equivalent:

(i) The flow f is a dynamic Nash equilibrium flow.

(ii) The pair (q̂P, f) is a dynamic prediction equilibrium.

(iii) For all i ∈ I and e ∈ E reachable from si it holds x+
i,e = x−i,e.

(iv) For all i ∈ I it holds x̂+
i,e = x̂−i,e for e ∈ Ei, and f+

i,e

a.e.≡ 0 for e /∈ Ei.

(v) For all i ∈ I it holds bi,si = −bi,ti.

(vi) For all i ∈ I it holds b̂i,si = −b̂i,ti.

Koch and Skutella showed in [17] that for piecewise right-constant inflow rates, i.e. func-
tions ui : R → R such that for any θ there is some ε > 0 with ui|[θ,θ+ε) ≡ ui(θ), there always
exists a dynamic Nash equilibrium flow. They are not necessarily unique, however, their
corresponding arrival functions lsi,v are.

As stated previously, the perfect predictor is not oblivious and therefore the existence
result for DPE cannot be used to obtain existence of dynamic Nash equilibrium flows.
However, for inflow rates ui ∈ Lp

loc([0,M],R≥0) with 1 < p < ∞, M ∈ R>0, and strictly
positive transit times τe > 0, Cominetti et al. have shown existence in [7, Theorem 8] using
a similar technique based on the variational equality. This gives rise to the question whether
we can drop the obliviousness requirement in the existence theorem for DPE if we restrict
ourselves to inflow functions with a bounded support.

4.7.2 Instantaneous Dynamic Equilibrium Flows
Instantaneous Dynamic Equilibrium Flows have been introduced by Graf et al. in [14] to
reflect the fact that real-world traffic navigation systems obtain traffic data in real-time. In
their model, agents base their routing decisions only on the current traffic load of the edges.
In comparison with dynamic Nash equilibrium flows, this is a more realistic scenario, as
agents cannot know the future evolution of the traffic.

61

4 Dynamic Prediction Equilibria

More specifically, Graf et al. define the so-called instantaneous edge cost at time θ as
c̄e(θ) := τe + qe(θ)/νe for a given feasible flow f . The instantaneous shortest distance dv,i to
the sink ti when starting at a node v ∈ Vi at time θ is then defined as

di,v(θ) = min
P∈Pv,ti

∑
e∈P

c̄e(θ).

Remark 4.7.11. In [14], edge transit times were expected to be strictly positive, and the
instantaneous shortest distances were defined as the unique solution to

di,v(θ) :=
{

0, for v = ti,
mine=vw∈E di,w(θ) + c̄e(θ), for v ∈ Vi \ {ti}.

If there exist cycles C with
∑

e∈C c̄e(θ) = 0 this solution is no longer unique. To perform a
more general comparison with dynamic prediction equilibria we here explicitly allow τe = 0
and cycles of zero transit time.

An edge e = vw ∈ Ei is called instantaneously active at time θ, if di,v(θ) = di,w(θ) + c̄e(θ)
holds true. The set of instantaneously active edges at time θ is denoted as Ei,θ.

Definition 4.7.12. A feasible dynamic flow f is called instantaneous dynamic equilibrium
(IDE) flow if for all i ∈ I, e ∈ E and θ ∈ R it holds that

f+
i,e(θ) > 0 =⇒ e ∈ Ei,θ.

We already saw that the behavior prescribed in an IDE flow deeply corresponds with
the behavior of agents using the constant predictor in a DPE. In both cases, agents use a
current snapshot of the traffic and assume these conditions for the future. The following
lemma confirms this perception.

Lemma 4.7.13. A feasible flow f is an instantaneous dynamic equilibrium flow if and only
if the pair (q̂C, f) is a dynamic prediction equilibrium.

Proof. For any θ ∈ R, the predicted cost when using the constant predictor resolves to
ĉi,e(· , θ, f) ≡ c̄e(θ). Given any θ, θ̄ ∈ R, this implies

l̂i,v(θ, θ̄, f) = min
P∈Pv,ti

T̂i,P (θ, θ̄, f) = min
P∈Pv,ti

θ +
∑
e∈P

c̄e(θ̄) = θ + di,v(θ̄).

Moreover, the predicted delay equates to

∆̂i,e(θ, θ̄, f) = l̂i,w
(
T̂i,e(θ, θ̄, f), θ̄, f

)
− l̂i,v(θ, θ̄, f)

= θ + c̄e(θ̄) + di,w(θ̄) − (θ + di,v(θ̄)) = ce(θ̄) + di,w(θ̄) − di,v(θ̄).

Hence, the condition e ∈ Êi(θ, θ, f) is equivalent to e ∈ Ei,θ, showing equivalence between
the two models of equilibrium.

Graf et al. have shown in [14, Theorem 4.6] that if the support of all network inflow
rates is bounded, then any IDE flow f terminates. This means that there exists some

62

4.7 Comparison with Existing Forms of Equilibria

H > 0 such that Bs,i(θ) = −Bt,i(θ) holds for all θ ≥ H and commodities i ∈ I. Here,
Bv,i(θ) :=

∑
e∈δ+

v
F+

i,e(θ) −
∑

e∈δ−v
F−i,e(θ) denotes the cumulative flow balance of a node v.

It remains an open question which properties a set of predictors has to fulfill such that
a dynamic prediction equilibrium terminates given network inflow rates with bounded sup-
port.

In [12, Theorem 3.7] Graf and Harks gave an algorithm that computes IDE flows in
single-source networks in finite time. Analogous theorems for DPE strongly depend on the
predictors used. However, it might be possible to exploit the same techniques used in [12]
to prove the existence of DPE for the linear predictor in single-sink networks, and even
formulate a finite-time algorithm for its computation.

63

5 Computing Approximate Dynamic
Prediction Equilibria

In this chapter we discuss the computation of dynamic prediction equilibria. Here, we
introduce an extension-based procedure, which requires that all predictors are oblivious
and FIFO-compatible. Moreover, we do not discretize the time of the particles’ flow, but
instead we discretize the points in time at which agents calculate their routes. This gives
rise to the definition of an approximated dynamic prediction equilibrium.

In the first section, we formally define approximated dynamic prediction equilibria and
give an outline of the procedure computing these objects. After that, we study the exact
behavior of deterministic edge outflow rate functions given piecewise constant edge inflow
rates in Section 5.2. This is used in Section 5.3 to show that the proposed algorithm is
correct and that it terminates. Finally, in Section 5.4, an experimental study that compares
the performance of different predictors in terms of their average travel times is presented.

5.1 Outline of the Extension-Based Approximation Algorithm

In dynamic prediction equilibria, agents can adjust their route at every intersection. As
agents behave like infinitesimal particles in a continuous flow model, these routes may
change in a continuous manner. However, for computational analyses it is infeasible to
calculate shortest paths in a continuous manner. Therefore, in this computational study,
we discretize the points in time at which routes are recalculated.

More specifically, shortest paths are recalculated every ε time units for some ε > 0. This
means that particles arriving at an intermediate node v at some time θ will use a predicted
shortest path computed at time

ϑε(θ) :=
⌊
θ

ε

⌋
· ε,

leading to the following variant of DPE.

Definition 5.1.1. Let f be a dynamic flow, q̂ = (q̂i,e)i,e a set of predictors and ε > 0. The
pair (f, q̂) is called an ε-approximated dynamic prediction equilibrium (ε-DPE) up to time
H ∈ R ∪ {∞} if f is feasible up to time H and for all e ∈ E, i ∈ I and almost all θ < H it
holds that

f+
i,e(θ) > 0 =⇒ e ∈ Êi (ϑε(θ), ϑε(θ), f) .

In other words, whenever there is positive inflow into an edge, that edge must be active
at time k · ε as predicted at time k · ε with k · ε ≤ θ < (k + 1) · ε.

The next restriction we require is that network inflow rates are piecewise constant with
finitely many jumps. This has the benefit that all edge inflow and outflow rates of a
dynamic flow are piecewise constant as well. Cumulative edge inflow and outflow functions,

65

5 Computing Approximate Dynamic Prediction Equilibria

as well as queue length and exit time functions of edges are piecewise linear as a result.
The same applies to the exit time functions of paths and the earliest arrival time functions,
because the composition and the minimum of piecewise linear functions are in turn piecewise
linear. Consequently, we require that the predicted queue length functions q̂i,e(· , θ̄, f) of
all predictors can be expressed as piecewise linear functions with finitely many breakpoints.
We specify these classes of functions formally:

Definition 5.1.2. A function f : R → R is called (right) piecewise constant if there exists a
finite chain ξ1 < ξ2 < · · · < ξk with ξi ∈ R such that f is constant on (−∞, ξ1), on [ξi, ξi+1)
for i ∈ [k − 1] and on [ξk,∞).

Definition 5.1.3. A function f : R → R is called piecewise linear if there exist values
δl, δr ∈ R and a finite chain ξ1 < ξ2 < · · · < ξk with ξi ∈ R such that for all x ∈ R it holds

f(x) =

f(ξ1) + (x− ξ1) · δl, for x < ξ1,

f(ξi) + (x− ξi) · f(ξi+1)−f(ξi)
ξi+1−ξi

, for ξi ≤ x < ξi+1, i ∈ [k − 1],

f(ξk) + (x− ξk) · δr, for x ≥ ξk.

The predictors allowed in our simulation need to be oblivious and FIFO-compatible. The
first requirement is necessary, as we build our flow in an extension based approach, so that
predictions cannot rely upon the future evolution of the flow. The second requirement allows
us to use the algorithms introduced in Chapter 2 to compute shortest paths.

In the following we give an overview on the computation of ε-DPE. Initially, we begin
with a “zero”-flow f with f+, f− :≡ 0. This is our ε-DPE flow up to time H = 0, where we
call H the flow horizon of f . We aim to compute an ε-DPE flow up to time Hcomp ∈ R.
The algorithm consists of two different phases that need to be repeated multiple times: A
routing phase and a distribution phase.

A routing phase is run whenever the ε-DPE flow f has been calculated up to some multiple
H = k · ε of ε. All routes that have been calculated up to that time are invalidated, and
new routes are determined. This is done in the following two steps:

(R1) Gather predictions q̂i,e(· , H, f) as piecewise linear functions for all commodities i ∈ I
and edges e ∈ E.

(R2) Compute the set of active outgoing edges δ+
v ∩ Êi(H,H, f) for all nodes v ∈ Vi and

commodities i ∈ I.

The distribution phase is responsible for extending the dynamic flow. Assume we have
computed an ε-DPE flow f up to time H and want to extend this flow horizon H up to
some time H ′ > H. The next routing step based on the flow horizon H is ϑε(H) + ε. To
follow the conservation constraint (F4), we need to distribute the node inflow rate

b−i,v(θ) :=
∑

e∈δ−v

f−i,e(θ) + 1v=si · ui(θ)

of a node v to outgoing edges for each commodity i ∈ I. A distribution phase then consists
of the following two steps.

66

5.1 Outline of the Extension-Based Approximation Algorithm

Initial flow f ≡ 0
with horizon H = 0

Routing Phase
(R1) Gather (q̂i,e(· , H, f))i,e

(R2) Compute (Êi(H,H, f))i

Distribution Phase
(D1) Distribute b−

i,v(H) uniformly to
δ+

v ∩ Êi(ϑε(H), ϑε(H), f) on [H,∞)
(D2) Determine maximal H ′ ≤ ϑε(H) + ε such that

(b−
i,v)i,v is constant on [H,H ′), and set H := H ′

H ≥ Hcomp

H = ϑε(H)

Return f

No

Yes

No

Yes

Figure 5.1: A schematic overview of the computation of an ε-DPE.

(D1) Update f with the deterministic flow with respect to the updated inflow rates

f+
i,e|[H,∞) :≡

b−i,v(H)

|δ+
v ∩Êi(ϑδ(H),ϑδ(H),f)| , if e ∈ Êi(ϑδ(H), ϑδ(H), f),

0, otherwise,

for all commodities i ∈ I and edges e = vw ∈ E.

(D2) Determine the maximal H ′ ≤ ϑδ(H)+δ such that b−i,v is constant on [H,H ′) (according
to the updated deterministic flow) for every node v and commodity i ∈ I, and set
H := H ′.

The distribution phase is executed multiple times until the flow horizon H reaches the
next multiple of ε; then a new routing phase is initiated. Once the flow horizon H reaches
the computation target Hcomp we terminate the process and return the computed flow f .
A schematic overview of this algorithm is depicted in Figure 5.1

Remarks on the Implementation
There are three major considerations that one has to contemplate when implementing this
algorithm.

While it is relatively cheap to compute the predicted queue length functions q̂i,e(· , H, f)
for the different predictors introduced in Section 4.6, it is computationally expensive to
retrieve the set of active edges Êi(H,H, f). Secondly, a difficulty in the distribution phase
lies in computing the outflow rates when “extending” the inflow rates with a new constant as
done in Step (D1). And thirdly it is unclear how to find the maximal time H ′ such that b−i,v is

67

5 Computing Approximate Dynamic Prediction Equilibria

constant on [H,H ′) quickly. It is a good idea to solve the latter two problems in combination,
as any change to an edge outflow rate f−i,e (induced by changing edge inflow rates) results
in a change of the target node’s inflow rate b−i,w (for e = vw). The solution to these two
problems is discussed in Sections 5.2 and 5.3. Additionally, because the distribution phase
may be run very often, it is essential to do only as much work as necessary. Here, we can
reduce the work load in consecutive distribution phases by only considering nodes v whose
inflow rates (b−i,v)i changed at time H.

The problem of computing the set Êi(H,H, f) of active edges of a commodity i can
be solved by the Dynamic Bellman-Ford algorithm as explained in Section 2.6. However,
because of its poor running time, it is more beneficial to use the approach described in
Section 2.5 involving the Dynamic Dijkstra algorithm. With this approach we have to
calculate the active outgoing edges for each node and commodity with a separate run of
the Dynamic Dijkstra Procedure. Therefore, the idea is to delay this calculation until we
notice a node v in the distribution phase with positive inflow rate b−i,v and only calculate
the active outgoing edges of v on demand. In most cases, only a small subset of nodes will
be experience inflow of a certain commodity; experiments have shown that this approach is
much faster than the Dynamic Bellman-Ford algorithm.

Nevertheless, for predictors q̂i that are constant in the first argument, i.e. if q̂i,e(· , θ̄, f)
is constant for all e ∈ E, θ̄ ∈ R and deterministic flows f , a single run of a simple static
version of Dijkstra’s algorithm suffices to compute the set of all active edges. For predictors
of this type, this approach is then obviously the preferred method to compute Êi(H,H, f).

Adjustments for Computing IDE flows

In Step (D1) we choose to distribute the node inflow rate equally to all active outgoing edges.
Of course, this does not ensure, that edges that were active at time ϑ(H) will remain active
throughout the interval (H,H ′). In the case of instantaneous dynamic equilibria, that is, if
all commodities use the constant predictor, and if we have only a single sink, we can use the
more sophisticated so-called water filling algorithm (c.f. [14, Online Appendix Section 2]) to
distribute the node inflow to the active outgoing edges. This algorithm ensures that edges
remain active for some time period.

When computing an ε-DPE we usually deal with arbitrary predictors, and hence use the
heuristic to distribute incoming flow uniformly across the active outgoing edges. However,
the adjustments necessary to compute exact IDE flows are modest: In the routing phase,
we can use a static version of Dijkstra’s algorithm to compute the instantaneous active
edges (Ei,H) for some time H. We then compute the maximal H ′ such that no node inflow
rate changes and the set of active edges remains the same on (H,H ′). Then, we distribute
the node inflow rate according to the water filling algorithm and repeat this procedure
until we have reached the targeted flow horizon Hcomp. The adjusted procedure is depicted
in Figure 5.2.

For further analysis of the resulting “natural extension algorithm” the reader is referred
to [12]. A key result therein is that there is an implementation of this algorithm that is
guaranteed to terminate.

68

5.2 Outflow Rates of Piecewise Constant Inflow Rates

Initial flow f ≡ 0
with horizon H = 0

Routing Phase
Compute (Ei,H)i

Distribution Phase
(D1′) Distribute b−

i,v(H) to δ+
v ∩ Ei,H on [H,∞)

according to the water filling algorithm
(D2′) Determine maximal H ′ ∈ R ∪ {∞} such that

(b−
i,v)i,v is constant on [H,H ′) and Ei,θ = Ei,H

for θ ∈ (H,H ′), and set H := H ′

H ≥ Hcomp

Return f

No

Yes

Figure 5.2: A schematic overview of the computation of an exact IDE flow.

5.2 Outflow Rates of Piecewise Constant Inflow Rates
To compute approximate dynamic prediction flows, we first consider a few theoretical ob-
servations involving the computation of general, deterministic, dynamic flows. The idea
of the introduced algorithm is to utilize the simple structure of dynamic flows generated
by piecewise constant inflow rates. This simple structure is demonstrated by the following
theorem.

Theorem 5.2.1. Let f be a dynamic flow that is deterministic on an edge e ∈ E, let
(gi,e)i∈I ∈ RI

≥0 be a set of new constant inflow rates into e beginning from time H ∈ R, and
let ge :=

∑
i∈I gi,e. The deterministic outflow rates corresponding to the inflow rates

h+
i,e(θ) :=

{
f+

i,e(θ), for θ < H,
gi,e, for θ ≥ H,

are denoted by (h−i,e)i. Then h−i,e is given by h−i,e|(−∞,T f
e (H))

a.e.= f−i,e|(−∞,T f
e (H)) and by the

following three cases:

Case I: ge = 0. It holds h−i,e|[T f
e (H),∞)

a.e.≡ 0.

Case II: ge > 0 ∧
(
qf

e (H) = 0 ∨ ge ≥ νe

)
. It holds h−i,e|[T f

e (H),∞)
a.e.≡ min{νe, ge} · gi,e

ge
.

Case III: ge ∈ (0, νe) ∧ qf
e (H) > 0. For Tdepl := H + qf

e (H)
νe−ge

, it holds that

h−i,e|[T f
e (H),Tdepl+τe)

a.e.≡ νe · gi,e

ge
and h−i,e|[Tdepl+τe,∞)

a.e.≡ gi,e.

69

5 Computing Approximate Dynamic Prediction Equilibria

Proof. As the inflow rates of f and h into edge e match up to time H, the queue and exit
time functions of edge e coincide up to time H, and the outflow rate functions match up to
time Te(H) as per Lemma 3.4.8.

In the following, we use a simple observation on the queue length for any θ > Te(H):

qh
e (θ − τe) = qe(H) + ge · (θ − τe −H) −

∫ θ

H+τe

h−e dλ.

Case I. From ge = 0 it follows that

qh
e (θ − τe) ≤ qe(H) −

∫ Te(H)

H+τe

h−e dλ = 0,

for all θ > Te(H). Here, the last equality follows from Proposition 3.3.2 and (F2). By
using (F2) again, this implies h−i,e(θ) = 0 for almost all θ > Te(H).

Case II. We show h−e (θ) = min{νe, ge} for almost all θ > Te(H). Then, since any ξ fulfilling
T h

e (ξ) = θ is greater than H, property (F3) leads to the conclusion h−i,e(θ) = min{νe, ge}· gi,e

ge

for almost all θ > Te(θ).
Let us first analyze the case ge > νe: For any θ > Te(H) the queue length fulfills

qh
e (θ − τe) ≥ (ge − νe) · (θ − τe −H) > 0,

and therefore h−e (θ) = νe holds for almost all θ > Te(H). For ge = νe, the same conclusion
holds true.
Now assume ge ∈ (0, νe) and qe(H) = 0. By Corollary 3.4.2, for any θ > Te(H) we have

qh
e (θ − τe) = max

ξ∈[H,θ−τe]

∫ θ−τe

ξ
h+

e − νe dλ = 0.

Applying (F3) yields h−e (θ) = ge for almost all θ > Te(H).

Case III. Similar to the case above, it suffices to prove both h−e |(Te(H),Tdepl+τe)
a.e.≡ νe and

h−e |(Tdepl+τe,∞)
a.e.≡ ge. For θ ∈ (Te(H), Tdepl + τe) we have

qh
e (θ − τe) ≥ qe(H) − (νe − ge) · (θ − τe −H) > 0,

implying h−e (θ) = νe for almost all of these θ. This shows that Tdepl is in fact chosen such
that qh

e (Tdepl) = qh
e (H) − (νe − ge) · (Tdepl −H) = 0. For θ > Tdepl + τe we simply compute

qh
e (θ − τe) = max

ξ∈[Tdepl,θ−τe]

∫ θ−τe

ξ
h+

e − νe dλ = 0,

implying h−e (θ) = ge.

Remark 5.2.2. The proof describes not only the structure of the outflow rates beginning at
time Te(H) but also the corresponding evolution of the queue length starting at time H.
This means, in the setting of Theorem 5.2.1, the queue qh

e is given for θ ≥ H as follows.

70

5.3 Correctness and Termination

Cases I and III. Denoting the depletion time by Tdepl := H + qf
e (H)/(νe − ge), we have

qh
e (θ) =

{
qf

e (H) − (θ −H) · (νe − ge), for θ ∈ [H,Tdepl],
0, for θ ≥ Tdepl.

Case II. No queue depletion occurs and for all θ ≥ H we have

qe(θ) = qe(H) + (θ −H) · max{ge − νe, 0}.

5.3 Correctness and Termination

The previous section allows us to calculate the deterministic outflow rates for the case that
new constant inflow rates are assigned to an edge as in Step (D1): In the implementation,
we maintain piecewise constant functions f+

i,e and f−i,e for all i ∈ I and e ∈ E, as well as
piecewise linear functions qe for all e ∈ E. Before and after each distribution phase, these
functions represent a deterministic flow that is feasible up to time H. In Step (D1) the
inflow rates are then updated starting from time H and the outflow rates as well as the
queue length functions are updated according to Theorem 5.2.1 and Remark 5.2.2 starting
from times Te(H) and H, respectively, while preserving the deterministic property of f .

To quickly detect the maximum H ′ such that b−i,v stays constant on [H,H ′) for all i ∈ I,
v ∈ V in Step (D2), we employ a priority queue that contains all events of the form

(E1) “The outflow rate f−i,e changes at time θ” for all i ∈ I, e ∈ E and θ > H, and

(E2) “The network inflow rate ui changes at time θ” for all i ∈ I and θ > H.

To achieve this, whenever we update an edge’s outflow rate f−i,e in Step (D1), we generate
corresponding events of type (E1) and possibly remove already existing events, that are
rendered invalid by the update. As we require τe > 0 for all e ∈ E, the added events happen
at some time θ > H. The events of type (E2) are enqueued in the initialization of the
algorithm.

A change in a node inflow rate b−i,v requires that either the network inflow rate has changed
(and v = si) or that an outflow rate of an incoming edge has changed. Thus, the minimum
time θ of all events in the priority queue is a good lower bound to the maximum time H ′
such that b−i,v|[H,H′) is constant for all i ∈ I and v ∈ V . If there is only a single event in
the queue at time θ, then b−i,v changes at time θ, and we have H ′ = θ. If multiple events
occur at time θ and their changes to b−i,v balance out for all i ∈ I and v ∈ V , we can simply
ignore these events, because this implies that all b−i,v stay constant with value b−i,v(H) for an
even longer period than up to time θ. Otherwise, b−i,v changes at time θ = H ′. Once H ′ is
determined, we remove all events with time θ ≤ H ′ from the priority queue.

We now show the correctness and termination of the proposed algorithm.

Definition 5.3.1. A predictor q̂i is computable as piecewise linear functions, if the function
q̂i,e(· , θ̄, f) is piecewise linear and there exists an algorithm computing this function for
every e ∈ E, θ̄ ∈ R and for every deterministic flow f with piecewise constant inflow rates.

71

5 Computing Approximate Dynamic Prediction Equilibria

Theorem 5.3.2. If all predictors are FIFO-compatible, oblivious and computable as piece-
wise linear functions and all τe are strictly positive, then the algorithm in Section 5.1 returns
an ε-DPE up to time Hcomp ∈ R in finite time.

Proof. If the algorithm terminates, the returned flow is both deterministic (up to time ∞)
and feasible up to time Hcomp. The fact that at any time θ we extend the flow along edges
in Êi(ϑε(θ), ϑε(θ), f) implies that (q̂, f) is an ε-DPE up to time Hcomp.

To acknowledge that the algorithm terminates, we require that all predictors are com-
putable as piecewise linear functions. This enables us to use the algorithms in Chapter 2 to
calculate active edges. Now, a single change in the node inflow rate b−i,v at some time θ can
cause finitely many events of type (E1) that all happen later than (or at) time θ+ τmin with
τmin := mine∈E τe > 0. Assume, we have computed a flow up to time H. Then the number
of events that occur up to time H + τmin/2 have already been enqueued. After processing
these finitely many events, we will have computed a flow up to time H + τmin/2. This is
enough to assess that the algorithm terminates.

For a more thorough analysis, let d+
max := maxv∈V

∣∣δ+
v

∣∣ denote the maximum degree of
outgoing edges over all nodes and let Pi denote the number of jumps of ui. We write
P :=

∑
i∈I Pi. Then, during the interval [0, τmin), at most k0 := P events can happen. A

single event that occurs at time θ can cause at most 2d+
max · |I| events all of which happen

later than θ + τmin. Thus, the number of events that occur within the interval [τmin, 2τmin)
is bounded from above by k1 := k0 · (1 + 2d+

max · |I|). Similarly, the number of events that
happen in the interval [lτmin, (l+ 1)τmin) is bounded by kl := k0 · (1 + 2d+

max · |I|)l. Utilizing
the geometric sum, the number of events that occur up to time ⌈Hcomp/τmin⌉ · τmin ≥ Hcomp
is bounded by ⌈

Hcomp
τmin

⌉
∑
l=0

kl = P ·
(
1 + 2d+

max · |I|
)⌈Hcomp

τmin

⌉
+1

− 1
2d+

max · |I|
,

and thus the number of distribution phases is O
(
P · (1 + 2d+

max · |I|)
Hcomp

τmin
+2
)

.

5.4 Experimental Study

In this last section we conduct several experiments to demonstrate the capabilities of the
proposed algorithm. Most of these results were also described in [13, Section 5]. In the
following experiments, we compare the performance of the different predictors in several
scenarios. We measure a predictor’s performance by the average travel time of particles
using that predictor. For that, we use simple network inflow rates: For a commodity i we
set ui := 1[0,h) · ūi for some constant ūi ∈ R>0 and some (common) inflow horizon h ∈ R>0.

The outflow rate of a commodity i is denoted as oi(θ) :=
∑

e∈δ−ti

f−i,e(θ) −
∑

e∈δ+
ti

f+
i,e(θ).

Integrating ui(ψ)−oi(ψ) over [0, ϕ] yields the flow of commodity i that is inside the network
at time ϕ. Taking the integral of this quantity over some time period [0, Hcomp] with
Hcomp ≥ h gives the total travel time of particles of commodity i up to time Hcomp:

T total
i :=

∫ Hcomp

0

∫ ϕ

0
ui(ψ) − oi(ψ) dψ dϕ.

72

5.4 Experimental Study

The average travel time is defined as T avg
i := T total

i /(h · ūi).
A particle that follows a predictor blindly has a certain regret in comparison to an optimal

choice. This regret is defined in the following. For example, a particle using the perfect
predictor can choose a path of minimal travel time and thus does not regret its routing
decisions. The average minimum travel time (resulting from an optimal route choice) of
particles up to some time horizon Hcomp with source-sink-pair (si, ti) can be determined
using

T avg
i,OPT := 1

h
·
∫ h

0
min{Hcomp, lsi,ti(θ)} − θ dθ.

In this expression, the term min{Hcomp, lsi,ti(θ)} − θ describes the minimum travel time of
particles spawning at time θ at the source si, limited at the time horizon Hcomp. Taking
the integral of this quantity over [0, h] and dividing by h yields the average minimum travel
time. In the conducted experiments, we then measure the regret of a commodity i by
T avg

i /T avg
i,OPT. Here, the Dynamic Bellman-Ford algorithm (Section 2.6) is used to determine

the piecewise linear function lsi,ti(·) for the dynamic cost function induced by the computed
queue lengths.

5.4.1 Data
We consider three different types of networks in our experiments. The first network is a
small, synthetic network which was studied in [14]. Its graph is depicted in Figure 5.3.

s v

t w

(1, 2)

(1, 2)

(1, 1)

(1, 1)(3, 1)

Figure 5.3: A network with source s and sink t. Edges are labeled with (τe, νe).

Additionally, we use data from two real-world traffic networks. One of them is the Sioux
Falls road network as presented in [18] which is a popular example for analyzing models in
the transportation science literature. With only 24 nodes, this network is still comparatively
small. The publicly available data set contains the (free-flow) travel time and capacity rate
of each road segment.

Open Street Maps [21] offers the street networks of almost any region in the world. From
this data set, the street network of the center of Tokyo was extracted. It offers the free-flow
speed, the length and the number of lanes of each road segment. Here, the transit time τe is
derived as the product of the length and the free-flow speed of a road segment; the capacity
νe is computed as the product of the number of lanes and the free-flow speed.

More in-depth information on these networks is displayed in Table 5.1. Here, T avg
comp is

the average computation time for computing an ε-DPE flow up to time Hcomp. In these
calculations, all predictors are used by exactly one commodity, except the constant predic-
tor, which is used by all remaining commodities. The complete experimental study was
conducted on a single core of an Intel® Core™ i7-3520M CPU at 2.90GHz.

73

5 Computing Approximate Dynamic Prediction Equilibria

Network Synthetic Sioux Falls Tokyo
|E| 5 75 4,803
|V | 4 24 3,538
|I| 5 17 40

[νmin, νmax] [1, 2] [4823, 25901] [8, 250]
[τmin, τmax] [1, 3] [2, 10] [0.01, 6.6]
Hcomp 500 100 100
h 25 25 25
ε 0.25 1 2.5

H for q̂L 10 20 20
δ,H for q̂RL 5, 10 1, 20 1, 20

δ, kp, kf for q̂ML 1, 10, 10 1, 20, 20 1, 20, 20
ML model for q̂ML single per-edge single

T avg
comp 1.65s 10.92s 343.93s

Table 5.1: Attributes and configuration of the considered networks.

5.4.2 The Linear Regression Predictor

Before discussing the results of the experimental study, we make a few remarks on the
implementation of the linear regression predictor. The other (oblivious) predictors discussed
in Section 4.6 are rather easy to implement.

During the experimental study, numerous machine-learning frameworks were considered.
These include the Tensorflow framework [1], the Weka tool [11] and the Deep Graph Library
[27] together with the PyTorch framework [22]. However, more detailed experiments were
conducted using the scikit-learn framework [23], which supports efficient implementations
of linear regression methods.

The linear regression predictor was introduced in Section 4.6. Here, we want to learn
coefficient matrices W e′ ∈ Rkp×kf for all edges e = vw and neighboring edges e′ ∈ N(e)
as well as biases β ∈ Rkf . Using these values, our raw machine-learned prediction method
outputs the interpolation points

q̂ML,raw
i,e

(
θ̄ + j · δ, θ̄, f

)
:=

 ∑
e′∈N(e)

∑
i∈[kp]

we′
i,j · qf

e′

(
θ̄ − (i− 1) · δ

)
+ βj

+

for all j ∈ [kf]. Here, we choose N(e) := δ+
v ∪ {e} ∪ δ−v .

However, if the number of edges becomes too large – as is the case for the Tokyo instance –
we restrict ourselves in learning only a single model for all edges. This means, we only learn
a fixed set of coefficients and apply them to all edges e ∈ E. More specifically, let d−max :=
maxv∈V |δ−v | be the maximum in-degree of any node. We learn matrices W+1, . . . ,W+d+

max ,
W 0, W−1, . . . ,W−d−max and biases β ∈ Rkf . These generalized parameters can now be used
to predict the queue lengths of any edge e = vw: We (arbitrarily) order the neighboring

74

5.4 Experimental Study

edges using δ−v =: {e+1, . . . , e+|δ−v |}, e =: e0 and δ+
w =: {e−1, . . . , e−|δ+

w |} and compute

q̂ML,raw
e

(
θ̄ + j · δ, θ̄, f

)
:=

 ∑
el∈N(e)

∑
i∈[kp]

wl
i,j · qf

el

(
θ̄ − (i− 1) · δ

)
+ βj

+

.

The training data fed into the learning procedure stems from previously computed ap-
proximated dynamic equilibrium flows: For this, we pick random commodities and network
inflow rates and equip every commodity with the constant predictor q̂C

i,e. This has two ad-
vantages: Firstly, calculating shortest paths when using the constant predictor is efficient.
Secondly, the generated dynamic flows allow the machine-learning method to grasp the
behavioral model of particles adapting their route choices depending on the queue lengths.

5.4.3 Comparison of Predictors

We have now accomplished all necessary prerequisites for analyzing the results. For each
experiment we first describe its exact setup and then inspect the results.

Results for the Synthetic Network

First, we consider the synthetic network as given in Figure 5.3. We set up five commodities,
one for each predictor in {q̂Z, q̂C, q̂L, q̂RL, q̂ML}. All commodities have the same network
inflow rate ui := 1[1,h] · ū for some ū ∈ R>0 and h = 25. Moreover, every commodity has the
same source s and the same sink t. We compare the outcome for varying ū: For each ū ∈
{0.25, 0.5, . . . , 5.75, 6} we compute an ε-DPE flow up to time Hcomp = 500. Furthermore,
the rerouting interval is set to ε = 0.25. We note that in this case, the linear regression
predictor consists of a single model which was learned on a set of dynamic flows generated
in the Tokyo network.

0 5 10 15 20 25 30
0

50

100

150

200

Total Inflow
∑

i ūi

Av
er

ag
e

Tr
av

el
T

im
e
T

av
g

i

q̂Z

q̂C

q̂L

q̂RL

q̂ML

OPT

0 5 10 15 20 25 30

1

1.2

1.4

1.6

Total Inflow
∑

i ūi

R
eg

re
t
T

av
g

i
/T

av
g

i,
O

P
T

q̂Z

q̂C

q̂L

q̂RL

q̂ML

Figure 5.4: Measured average travel times and regrets of competing predictors in the syn-
thetic network in Figure 5.3.

The resulting average travel times of each predictor in each of these runs can be seen in
Figure 5.4. It is easy to derive a ranking of the predictors based on the travel times: The

75

5 Computing Approximate Dynamic Prediction Equilibria

linear regression predictor performed best – almost optimally. Notably, the Zero-Predictor,
which distributes flow along the paths (s, t) and (s, v, w, t) uniformly at all times, performs
better than the remaining predictors. The constant predictor performs worst in this network.
This is no surprise, as in [14], this network was deliberately chosen to show that IDE flows
admit cyclic behavior. The linear predictor reduces this behavior significantly, as it detects
earlier that queues build up at certain edges. The regularized linear predictor dampens this
quick recognition of growing queues slightly, but still behaves similar to the linear predictor.
It is noteworthy that the performance of the predictors starts deviating at

∑
i ūi = 6. For

an explanation of this deviation, further analysis is required.

Remark 5.4.1. In contrast to [13], the computation horizon Hcomp was increased from 100
to 500 to ensure that no flow remains in the network after terminating the simulation. This
makes the resulting figures much easier to interpret.

Results for the Sioux Falls Network

For the real-world network of Sioux Falls, a set I of 12 commodities is randomly generated
together with network inflow rates according to the capacity rates of the edges. We equip
all of these commodities with the constant predictor q̂C. For all i ∈ I we compute an ε-DPE
up to time Hcomp = 100, while calculating new routes every ε = 1 time units.

In the computation of the ε-DPE of commodity i, we generate five more commodi-
ties with the common source si and sink ti, and we assign each a different predictor in
{q̂Z, q̂C, q̂L, q̂RL, q̂ML} together with a network inflow rate of 1[0,h] · 0.125. This network
inflow rate is negligible compared to the network inflow rates of all other commodities, and
thus the resulting ε-DPE flows behave just like the flows in the training data, where the
constant predictor is used exclusively. For each of these runs, we monitor the regret of the
added commodities.

q̂Z q̂C q̂L q̂RL q̂ML

1

1.2

1.4

1.6

1.8

2

R
eg

re
t
T

av
g

i
/
T

av
g

i,
O

P
T

Figure 5.5: Average travel times compared to the minimum average travel time in the Sioux
Falls network.

The number of edges of the Sioux Falls network is small enough to learn separate coef-
ficients for each edge. This was done using a 90%/10% split for the training data and test
data. Here, the coefficient of determination was above 0.9 for all edges except for six edges

76

5.4 Experimental Study

but always higher than 0.5. The training data stems from previously computed ε-DPE with
randomly generated commodities and network inflow rates as above.

In Figure 5.5 the regret of each predictor is shown in a box plot. As expected, the
Zero-predictor performs worst. However, for the remaining predictors there is not a clear
winner.

Results for the Tokyo Network

For the Tokyo instance, the same setup was applied as for the Sioux Falls network. However,
as the Tokyo network has significantly more edges, it is infeasible to learn a model for each
edge separately. Hence, the approach using a single model as discussed in Section 5.4.2 was
used. Again, a training and validation split of 90%/10% was applied. Here, we obtained a
coefficient of determination of 0.97.

Computing an ε-DPE flow for every of the 35 randomly chosen commodities results in
the regrets as shown in the box plot in Figure 5.6. The results are again rather unsatisfying:
The Zero-predictor can be identified as the worst predictor, however the performance of the
other predictors is mostly indistinguishable.

q̂Z q̂C q̂L q̂RL q̂ML

1

1.5

2

R
eg

re
t
T

av
g

i
/T

av
g

i,
O

P
T

Figure 5.6: Average travel times compared to the minimum average travel time in the Tokyo
network.

Concluding Thoughts

On the one hand, the presented results show that the proposed algorithm is capable of
computing ε-DPE flows in large-scale real-world traffic networks. On the other hand, there
is still plenty of room for analyzing why the linear regression predictor did not perform
as well as expected in larger networks. In the following, a few starting points for further
research are listed.

I. Add more inputs to the linear regression predictor.
For example, past samples of the edge load F+

e′ (θ) − F−e′ (θ) of surrounding edges
e′ ∈ N(e) could be added. Whenever a queue occurs, this is due to a lack of capacity
on that edge. However, if there was no queue on an incident edge, the predictor has
no chance to detect an emerging queue.

77

5 Computing Approximate Dynamic Prediction Equilibria

II. Increase the computational horizon such that no more flow remains in the network
after termination.
This is a relatively simple tweak to the simulation parameters, however, with a possibly
large effect, as hinted by Remark 5.4.1.

III. Use manually selected commodities with interesting source and sink pairs.
Often times, randomly selected commodities do not offer an interesting route choice.
For example, if any flow starting at the source has to go through a low-capacity edge
right at the beginning, any predictor will most likely choose the same path thereafter,
because all the flow is stuck at the single bottleneck edge. Using commodities of this
type in the simulation makes it harder to compare the performance of the different
predictors.

IV. Consider a completely different approach for a machine-learned predictor.
There are plenty of methods for forecasting traffic. Modern routing services often
build upon so-called Graph Neural Networks (GNNs) where the concepts of deep
neural networks are applied to data structured in graphs. A survey on GNNs for
traffic forecasts is presented in [16]. It is reasonable to embed one of these modern
methods as a new predictor into the computation.

78

6 Conclusion

In this work, we generalized the equilibrium model introduced in [13] to describe the use
of modern routing services. These services are capable of using predictions of the future
congestion based on historic and real-time data.

As a first step general FIFO-ordered cost functions were analyzed. Here, the reversal
of functions and the duality of earliest arrival and latest departure times led not only to
a characterization of active edges, but also turned out to be a convenient notation for
proving the equivalence of dynamic Nash equilibrium flows and dynamic prediction flows
with respect to the perfect predictor. The characterization of active edges was used to
calculate the set of active outgoing edges of a node v using a variant of Dijkstra’s algorithm.
Moreover, using the Dynamic Bellman-Ford Algorithm it is possible to calculate earliest
arrival times as functions over time. This was used in the experimental study to calculate
the average minimum travel time to compare the performance of a predictor with an optimal
choice.

Before focusing on dynamic prediction equilibria, we introduced Vickrey’s Fluid Queuing
Model which establishes the physical constraints of the particles’ behavior. We formally
proved the unique existence of outflow rates given any set of inflow rates such that the
resulting flow is deterministic. This is a claim that was often stated in the past literature
for which a formal proof has not been published. Conducting the proof required several
measure-theoretical results such as Sard’s theorem which itself relies on Vitali’s Covering
Lemma.

Chapter 4 finally introduced dynamic prediction equilibria in its most general form, in
which predictors can use the historical flow f in their forecast. In [13], the existence of
DPE where oblivious, FIFO-compatible predictors that depend continuously on the queue
length functions was proven using the solution of a variational inequality. In this thesis, this
result was derived as a special case of the existence theorem that requires a more abstract
regularity condition on the predictors in the form of p-continuity. However, there still remain
several open questions for the existence of DPE: Do dynamic prediction equilibria still exist
if we allow τe = 0 for some edges e ∈ E? Can we drop the obliviousness requirement, in the
case of network inflow rates with bounded support? Do equilibria still exist if we consider
network inflow rates in L1

loc(R,R≥0)?
Besides these general statements we analyzed several predictors to apply the developed

theory to. An interesting example is the linear predictor which is incompatible with the
existence theorem because of its irregularity at points in which the gradient of the queue
length jumps. However, an example network for which the linear predictor does not admit
a dynamic prediction flow has not yet been found. For single-sink networks it might even
be possible to formulate a procedure for the computation of dynamic prediction flows with
respect to the linear predictor similar to the natural extension algorithm proposed in [12]
for computing IDE flows.

Furthermore, we proved that dynamic prediction equilibria generalize the popular dy-

79

6 Conclusion

namic Nash equilibrium flows and instantaneous dynamic equilibrium flows by considering
dynamic prediction flows with respect to the perfect and the constant predictor, respec-
tively. To show the equivalence to dynamic Nash equilibrium flows, the change in per-
spective yielded a novel characterization of these equilibria based on the latest departure
times.

The last chapter discussed the computation of dynamic prediction equilibria. More pre-
cisely, the concept of approximated dynamic prediction equilibria was introduced. This
type of equilibrium describes a state in which each agent computes new routes at certain
discrete times only. For a set of oblivious, FIFO-compatible predictors that are computable
as piecewise linear functions, we introduced an algorithm that computes an ε-DPE flow
up to some time horizon Hcomp and proved its correctness and termination. Finally, an
experimental study was conducted on three different networks, two of which are real-world
road networks. In the study, the performance of the predictors was compared with respect
to the average travel time of particles.

The results show that the proposed simulation is capable of computing ε-DPE in large-
scale traffic networks and that the linear regression predictor performs well for the synthetic
network. However, future analyses could elaborate on how to improve the linear regression
predictor in larger networks. Moreover, other means of current traffic forecast methods could
be embedded in the simulation, and it could be investigated whether they render compatible
with the proposed existence theorem. Furthermore, a study of the approximation guarantees
of an ε-DPE is left for future research.

80

Bibliography

[1] Martín Abadi et al. “TensorFlow: A System for Large-Scale Machine Learning”. In:
Proceedings of the 12th USENIX Conference on Operating Systems Design and Imple-
mentation. OSDI’16. Savannah, GA, USA: USENIX Association, 2016, pp. 265–283.
isbn: 9781931971331. doi: 10.5555/3026877.3026899.

[2] Hans Wilhelm Alt. Lineare Funktionalanalysis. Springer Berlin Heidelberg, 2012. doi:
10.1007/978-3-642-22261-0.

[3] Krishna B. Athreya and Soumendra N. Lahiri. Measure Theory and Probability The-
ory. Springer New York, 2006. doi: 10.1007/978-0-387-35434-7.

[4] Haïm Brézis. “Équations et inéquations non linéaires dans les espaces vectoriels en
dualité”. French. In: Annales de l’Institut Fourier 18.1 (1968), pp. 115–175. doi: 10.
5802/aif.280.

[5] Theodor Bröcker and Klaus Jänich. Einführung in die Differentialtopologie - Kor-
rigierter Nachdruck. Wiesbaden: Springer Berlin Heidelberg, 1990. isbn: 978-3-540-
06461-9.

[6] Felix E. Browder. “Nonlinear elliptic boundary value problems”. In: Bulletin of the
American Mathematical Society 69.6 (1963), pp. 862–874. doi: 10.1090/S0002-9904-
1963-11068-X.

[7] Roberto Cominetti, José Correa, and Omar Larré. “Dynamic Equilibria in Fluid
Queueing Networks”. In: Operations Research 63.1 (2015), pp. 21–34. doi: 10.1287/
opre.2015.1348.

[8] Brian Dean. Shortest Paths in FIFO Time-Dependent Networks: Theory and Algo-
rithms. Tech. rep. Massachusetts Institute of Technology, Jan. 2004. url: https:
//people.cs.clemson.edu/~bcdean/tdsp.pdf.

[9] Bolin Ding, Jeffrey Xu Yu, and Lu Qin. “Finding Time-Dependent Shortest Paths over
Large Graphs”. In: Proceedings of the 11th International Conference on Extending
Database Technology: Advances in Database Technology. EDBT ’08. Nantes, France:
Association for Computing Machinery, 2008, pp. 205–216. doi: 10.1145/1353343.
1353371.

[10] Luca Foschini, John Hershberger, and Subhash Suri. “On the Complexity of Time-
Dependent Shortest Paths”. In: Proceedings of the Twenty-Second Annual ACM-SIAM
Symposium on Discrete Algorithms. SODA ’11. San Francisco, California: Society for
Industrial and Applied Mathematics, 2011, pp. 327–341. doi: 10.5555/2133036.
2133063.

81

https://doi.org/10.5555/3026877.3026899
https://doi.org/10.1007/978-3-642-22261-0
https://doi.org/10.1007/978-0-387-35434-7
https://doi.org/10.5802/aif.280
https://doi.org/10.5802/aif.280
https://doi.org/10.1090/S0002-9904-1963-11068-X
https://doi.org/10.1090/S0002-9904-1963-11068-X
https://doi.org/10.1287/opre.2015.1348
https://doi.org/10.1287/opre.2015.1348
https://people.cs.clemson.edu/~bcdean/tdsp.pdf
https://people.cs.clemson.edu/~bcdean/tdsp.pdf
https://doi.org/10.1145/1353343.1353371
https://doi.org/10.1145/1353343.1353371
https://doi.org/10.5555/2133036.2133063
https://doi.org/10.5555/2133036.2133063

Bibliography

[11] E. Frank et al. “Weka: A machine learning workbench for data mining.” In: Data
Mining and Knowledge Discovery Handbook: A Complete Guide for Practitioners and
Researchers. Ed. by O. Maimon and L. Rokach. Berlin: Springer, 2005, pp. 1305–1314.
url: http://researchcommons.waikato.ac.nz/handle/10289/1497.

[12] Lukas Graf and Tobias Harks. “A finite time combinatorial algorithm for instantaneous
dynamic equilibrium flows”. In: Mathematical Programming (Feb. 2022). doi: 10.
1007/s10107-022-01772-0.

[13] Lukas Graf, Tobias Harks, Kostas Kollias, and Michael Markl. Machine-Learned Pre-
diction Equilibrium for Dynamic Traffic Assignment. 2021. arXiv: 2109.06713 [cs.GT].

[14] Lukas Graf, Tobias Harks, and Leon Sering. “Dynamic flows with adaptive route
choice”. In: Mathematical Programming 183.1-2 (May 2020), pp. 309–335. doi: 10.
1007/s10107-020-01504-2.

[15] Lions Jacques-Louis. Quelques méthodes de résolution des problèmes aux limites non
linéaires. French. Études Mathématiques. Paris: Dunod, 1969.

[16] Weiwei Jiang and Jiayun Luo. “Graph Neural Network for Traffic Forecasting: A
Survey”. In: CoRR abs/2101.11174 (2021). arXiv: 2101.11174.

[17] Ronald Koch and Martin Skutella. “Nash Equilibria and the Price of Anarchy for
Flows over Time”. In: Theory of Computing Systems 49.1 (Nov. 2010), pp. 71–97.
doi: 10.1007/s00224-010-9299-y.

[18] Larry J. LeBlanc, Edward K. Morlok, and William P. Pierskalla. “An efficient ap-
proach to solving the road network equilibrium traffic assignment problem”. In: Trans-
portation Research 9.5 (1975), pp. 309–318. issn: 0041-1647. doi: 10.1016/0041-
1647(75)90030-1.

[19] Michael Markl. Berechnung von Nash-Gleichgewichten in dynamischen Flüssen. Bach-
elor Thesis. Jan. 2020. url: https://michael-markl.de/dynamic-equilibrium-
flows/bachelorarbeit.pdf.

[20] George J. Minty. “On a "Monotonicity" Method for the Solution of Nonlinear Equa-
tions in Banach Spaces”. In: Proceedings of the National Academy of Sciences of the
United States of America 50.6 (1963), pp. 1038–1041. issn: 00278424. url: http:
//www.jstor.org/stable/71840.

[21] OpenStreetMap contributors. Planet dump retrieved from https://planet.osm.org. ht
tps://www.openstreetmap.org. 2017.

[22] Adam Paszke et al. “PyTorch: An Imperative Style, High-Performance Deep Learn-
ing Library”. In: Advances in Neural Information Processing Systems 32. Ed. by H.
Wallach et al. Curran Associates, Inc., 2019, pp. 8024–8035. url: http://papers.
neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-
deep-learning-library.pdf.

[23] Fabian Pedregosa et al. “Scikit-learn: Machine Learning in Python”. In: Journal of
Machine Learning Research 12.85 (2011), pp. 2825–2830. url: http://jmlr.org/
papers/v12/pedregosa11a.html.

[24] Halsey L. Royden and Patrick M. Fitzpatrick. Real Analysis. 4th ed. Prentice Hall,
2010. isbn: 9780131437470.

82

http://researchcommons.waikato.ac.nz/handle/10289/1497
https://doi.org/10.1007/s10107-022-01772-0
https://doi.org/10.1007/s10107-022-01772-0
https://arxiv.org/abs/2109.06713
https://doi.org/10.1007/s10107-020-01504-2
https://doi.org/10.1007/s10107-020-01504-2
https://arxiv.org/abs/2101.11174
https://doi.org/10.1007/s00224-010-9299-y
https://doi.org/10.1016/0041-1647(75)90030-1
https://doi.org/10.1016/0041-1647(75)90030-1
https://michael-markl.de/dynamic-equilibrium-flows/bachelorarbeit.pdf
https://michael-markl.de/dynamic-equilibrium-flows/bachelorarbeit.pdf
http://www.jstor.org/stable/71840
http://www.jstor.org/stable/71840
 https://www.openstreetmap.org
 https://www.openstreetmap.org
http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf
http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf
http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf
http://jmlr.org/papers/v12/pedregosa11a.html
http://jmlr.org/papers/v12/pedregosa11a.html

Bibliography

[25] Arthur Sard. “The measure of the critical values of differentiable maps”. In: Bulletin of
the American Mathematical Society 48.12 (1942), pp. 883–890. doi: 10.1090/S0002-
9904-1942-07811-6.

[26] William S. Vickrey. “Congestion Theory and Transport Investment”. In: The Amer-
ican Economic Review 59.2 (1969), pp. 251–260. issn: 00028282. url: http://www.
jstor.org/stable/1823678.

[27] Minjie Wang et al. “Deep Graph Library: Towards Efficient and Scalable Deep Learn-
ing on Graphs”. In: CoRR abs/1909.01315 (2019). arXiv: 1909.01315.

83

https://doi.org/10.1090/S0002-9904-1942-07811-6
https://doi.org/10.1090/S0002-9904-1942-07811-6
http://www.jstor.org/stable/1823678
http://www.jstor.org/stable/1823678
https://arxiv.org/abs/1909.01315

	Introduction
	Computing Dynamic Shortest Paths in FIFO-Networks
	Definition of the FIFO Order
	Properties of the FIFO Order
	Duality of Arrival and Departure Times
	The Dynamic Dijkstra Algorithm
	Computing Active Outgoing Edges
	Computing the Earliest Arrival Functions

	Vickrey's Fluid Queuing Model
	Fundamental Definitions
	Absolutely Continuous Functions
	Some Properties of Feasible Dynamic Flows
	The Existence and Uniqueness of Deterministic Flows

	Dynamic Prediction Equilibria
	Definition
	Example of a Dynamic Prediction Equilibrium
	Fundamentals for the Existence Theorem
	Existence of Dynamic Prediction Equilibria
	Sufficient Conditions for p-Continuity of Predictors
	Applied Predictors
	Comparison with Existing Forms of Equilibria
	Dynamic Nash Equilibrium Flows
	Instantaneous Dynamic Equilibrium Flows

	Computing Approximate Dynamic Prediction Equilibria
	Outline of the Extension-Based Approximation Algorithm
	Outflow Rates of Piecewise Constant Inflow Rates
	Correctness and Termination
	Experimental Study
	Data
	The Linear Regression Predictor
	Comparison of Predictors

	Conclusion

